Contribution ID: 186 Type: Invited Talk

Synchrotron VUV Study of Luminescent Properties in Mn-Doped ZnO-ZrO₂ Ceramics

Wednesday 5 November 2025 15:30 (20 minutes)

The luminescent behaviour of transition-metal ions strongly depends on the host lattice structure, defect concentration, and cation site occupancy. Owing to their ability to adopt multiple oxidation states, Mn ions can serve as sensitive optical probes in wide-bandgap oxide ceramics. In this work, we investigated the light-emitting properties of Mn-doped ZnO–ZrO $_2$ ceramics using synchrotron-based vacuum ultraviolet (VUV) excitation at the P66 beamline of PETRA III (DESY, Hamburg). The samples were prepared by solid-state reaction of the corresponding oxides at 1100–1500 $^{\circ}$ C for 3 h in air, with Mn concentrations of 0.01 and 0.1 at.%. Their structural and optical properties were also studied using FTIR spectroscopy, UV–Vis diffuse reflectance, SEM, and EDS analyses.

The emission–excitation maps revealed distinct luminescence behaviour depending on sintering temperature and excitation energy. Ceramics sintered at $1100-1200\,^{\circ}\text{C}$ exhibited two main components: a broad green emission excited by $250-300\,^{\circ}$ nm radiation associated with ZnO-related defects, and a narrower green band excited at $150-200\,^{\circ}$ nm, characteristic of ZrO₂-based regions. Upon Mn incorporation, a broad orange photoluminescence band emerged, becoming more pronounced at sintering temperatures above $1300\,^{\circ}\text{C}$, where strong densification and partial stabilization of the tetragonal ZrO₂ phase occur. The observed luminescence evolution is attributed to competition between Mn dopants and intrinsic defects coexisting within multiple structural phases. These findings highlight the sensitivity of Mn-related emission to local structure and demonstrate the potential of VUV excitation for probing defect- and dopant-related luminescence in complex oxide ceramics.

Type of presence

Presence online

Authors: Prof. KHOMENKOVA, Larysa (V. Lashkaryov Institute of Semiconductor Physics); KOZORIZ, Kostyantyn (V. Lashkaryov Institute of Semiconductor Physics of NAS of Ukraine); MELNICHUK, Oleksandr (Nizhyn Mykola Gogol State University); SMORTSOVA, Yevheniia (Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany); Dr JEROMIN, Arno (Centre for X-ray and Nano Science (CXNS), Deutsches Elektronen-Synchrotron DESY); VORONA, Igor (V.Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine); Dr KHOMENKOV, Volodymyr (Kiev Institute for Nuclear Research, National Academy of Science of Ukraine); KOTLOV, Aleksei; CHUKOVA, Oksana (Taras Shevchenko National University of Kyiv); Dr BORKOVSKA, Lyudmyla (V. Lashkaryov Institute of Semiconductor Physics of NAS of Ukraine)

Presenter: Prof. KHOMENKOVA, Larysa (V. Lashkaryov Institute of Semiconductor Physics)

Session Classification: Synchrotron Photoemission & X-ray Spectroscopies

Track Classification: USyNC Workshop