

Powder Diffraction at the Upgraded Materials Science Beamline

A. Cervellino

SLS, PSI

antonio.cervellino@psi.ch

PSI Powder Diffraction School 2012

The Paul Scherrer Institute, Villigen

The Materials Science Beamline at SLS - Powder Station

IDs : use a magnetic field to curve the electrons trajectory; then e⁻ emit photons by *Bremsstrahlung*

- Bending magnet (one curve)
- Wiggler (many curves)
- -Undulator : most modern, very many small curves: interference because the X-rays are emitted in ~ the same direction U14: High magnetic field (cryocooled), very short

period 1 of 4 mm between magnets : installed 2010 at MS-Powder

Advantage on older undulators: more flux at high E

Advantage on former wiggler: especially more <u>brilliance</u>!

PAUL SCHERRER INSTITUT

Continuous spectrum: we adjust the gap

and select the right harmonic 8 (a) Gap size [mm] 6 5 4 20 30 10 40 Photon energy [keV]

Plot of measured peak position vs. E and gap size for several harmonics

- DCM-mirror-mirror, fixed exit (+20 mm)
- Mirrors @ 85% α_{crit} ; Si-, Rh-, Pt-coatings
 - $-400 \text{ mm long}, < 0.5 \mu \text{rad slope error}$
- X1 Liquid nitrogen-cooled
 - Rotates only, fixed position
- X2 Translates horizontally and vertically with energy
 - Sagittal focussing

New optics @ MS

The Materials Science Beamline at SLS : Powder Station

Sample environment (here: N₂ jet, 90 K ... 500 K)

Sample : within glass capillary (0.1 ... 1 mm diam.)

We measure the scattered xrays as a function of the angle 2θ

Sample-filled capillary (< 1 mg sample)

Xray beam <u>at the station</u>:

-parallel

residual divergence (mono, Si 111 Darwin width) : FWHM ~ 35 μ rad = 0.0018 deg at 10 keV, ~ 18 μ rad = 0.0010 deg at 30 keV Source: 34 μ rad = 0.0018 deg Measured: **less...** [mirrors act as slits, sharp U14 resonances]

-monochromatic, continuously tunable* between 5 keV and 40 keV \pm 2 eV; wavelength: λ [Å] = 12.398 / E[keV] = 0.31 ... 2.48 Å

-brilliant ... up to ~ 10 mW/mm² = 10^{13} ph/mm²/s [unfocused]

-small ... ~ 5 mm hor. x 0.7 mm vert. (FWHM)

-focussable ... down to 200 μ m x 30 μ m (FWHM)

-fully polarized in the horizontal plane

Photon-counting

Made of silicon (0.3mm to 1 mm thick)

Each X-ray ends up ionizing Si \rightarrow Si⁺ + e⁻ : cost 3.6 eV

n. of e^- produced = X-ray E / 3.6 eV

Charge pulse -> tension pulse -> digital counter

Thresholding (skip pulses below a certain voltage):

- rise halfwidth $\sim 1.2 \text{ keV}$

- avoid crosstalk between pixels (thresholding > 50% beam energy)

- eliminate fluorescence: inelastic scattering can be cut off to <0.1% if it is at least 6 keV lower in energy than the main beam; the elastic scattering (and Compton) are not attenuated.

Dead time ~ 200 ns, max rate ~ 3 MHz, dyn. range 1.6*10⁷ (24 bit)

Min. acquisition time ~ 0.1 ms, lag time between acquisitions < 0.1 ms Efficient, fast, simultaneous covering of 120 deg with 0.0037 deg

resolution (> 30000 separate channels)

Accuracy (after flat-field & dead time correction) : ~ 0.01 %

Function

The Mythen detector has no analysis capability. The main contribution to the IRF becomes the projected cross section of the space region occupied by the sample! However, this is a well-known function. Other contributions have been parametrized as well.

Sample conditioning :

Temperature (several devices): we can set T from 4 K to 1800 K

Pressure: DAC, several Gpa

E field, B field, ...

Sapphire capillary: pressure < 200 atm, T<1000 C, liquids/gases interacting... (soon: gas loading up to ~ 200 bar)

Tensile machine (for metal samples)

In situ experiments :

Fast acquisitions while **something** happens to the sample High quality ~ 1 s, medium-low quality ~ 1 ms

Powder x-ray diffraction: gaining information

- Solving crystal structures
 - Polymorphism
 - Phase transitions
- Beyond crystal structure: Total scattering
 - Microstructure, size/shape distributions, QPA
 - Also non-crystalline matter
 - Interatomic vectors first coordination shells

Silicon is one of the most abundant elements on earth

Silicon is the most abundant element in the MS beamline!

- monochromator crystals
- mirrors
- attenuators
- standard sample
- detector
- electronics and computer CPUs

Thanks to the MS upgrade crew: P. Willmott, S. Leake, N. Casati, F. Gozzo, M. Lange, D. Meister, W. Xiaoquiang, A. Bergamaschi, T. Schmidt, M. Calvi, J. Krempasky, ...

Thanks for your attention!