Fractional Chern insulator edges: crystalline effects and optical measurement

8 Jan 2026, 17:00
20m
Saas Fee

Saas Fee

Conference center Steinmatte
Contributed talk Theory Thursday Afternoon Session, Chair Q. Si

Speaker

Johannes Motruk (University of Geneva)

Description

Edge states of chiral topologically ordered phases are commonly described by chiral Luttinger liquids, an effective theory that is exact only in the conformal limit; but in crystalline systems, deviations from simple power-law scaling of correlators generally emerge. Motivated by recent bulk observations of fractional Chern insulators in two-dimensional materials, we revisit this framework on lattices and quantify departures from the fractional quantum Hall case arising from lattice geometry. Using a combination of analytical arguments and numerics, including time-dependent matrix product state simulations, we separate universal and non-universal edge information. From correlation functions, we extract the anomalous boundary exponent, which tracks the bulk filling factor, and independently determine the non-universal edge velocity and associated energy scales from short-time dynamics. Applied across integer and fractional Chern bands with realistic Berry-curvature inhomogeneity, our procedure provides stable estimators that connect edge responses to bulk topology beyond the flat-band limit. We outline experimental probes in excitonic FCIs, including time-resolved edge spectroscopy, which directly access the predicted exponents and velocities.

email address johannes.motruk@unige.ch
Affiliation University of Geneva

Author

Johannes Motruk (University of Geneva)

Co-authors

Andrey Grankin (University of Maryland) Mohammad Hafezi (University of Maryland) Yan-Qi Wang (University of Maryland)

Presentation materials

There are no materials yet.