Technical Design Report
 for the
 Paul Scherrer Institute Experiment R-12-01.1: Studying the Proton "Radius" Puzzle with μp Elastic Scattering

The MUon proton Scattering Experiment collaboration (MUSE):

A. Afanasev, ${ }^{1}$ J. Arrington, ${ }^{2}$ O. Ates, ${ }^{3}$ F. Benmokhtar, ${ }^{4}$ J. Bernauer, ${ }^{5}$ E. Brash, ${ }^{4}$ W.J. Briscoe, ${ }^{1}$ K. Deiters, ${ }^{6}$ J. Diefenbach, ${ }^{3}$ C. Djalali, ${ }^{7}$ B. Dongwi, ${ }^{3}$ E. Downie, ${ }^{1}$ L. El Fassi, ${ }^{8}$ E. Fuchey, ${ }^{9}$ S. Gilad, ${ }^{5}$ R. Gilman (Contact person), ${ }^{8}$ R. Gothe, ${ }^{7}$ D. Higinbotham, ${ }^{10}$ Y. Ilieva, ${ }^{7}$ H. Jiang, ${ }^{7}$ M. Kohl, ${ }^{3}$ G. Kumbartzki, ${ }^{8}$ J. Lichtenstadt, ${ }^{11}$ A. Liyanage, ${ }^{3}$ N. Liyanage, ${ }^{12}$ M. Meziane, ${ }^{13}$ Z.-E. Meziani, ${ }^{9}$ D.G. Middleton, ${ }^{14}$ P. Monaghan, ${ }^{3}$ K.E. Myers, ${ }^{8}$ C. Perdrisat, ${ }^{15}$ E. Piasetzsky, ${ }^{11}$ V. Punjabi, ${ }^{16}$ R. Ransome, ${ }^{8}$ D. Reggiani, ${ }^{6}$ A. Richter,,${ }^{17}$ G. Ron (Spokesperson), ${ }^{18}$ A. Sarty, ${ }^{19}$ E. Schulte, ${ }^{9}$ S. Strauch, ${ }^{7}$ V. Sulkosky, ${ }^{5}$ A.S. Tadepalli, ${ }^{8}$ and L. Weinstein ${ }^{20}$
${ }^{1}$ George Washington University, Washington, DC, USA
${ }^{2}$ Argonne National Lab, Argonne, IL, USA
${ }^{3}$ Hampton University, Hampton, Virginia, USA
${ }^{4}$ Christopher Newport University, Newport News, Virginia, USA
${ }^{5}$ Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
${ }^{6}$ Paul Scherrer Institut, CH-5232 Villigen, Switzerland
${ }^{7}$ University of South Carolina, Columbia, South Carolina, USA
${ }^{8}$ Rutgers University, New Brunswick, New Jersey, USA
${ }^{9}$ Temple University, Philadelphia, Pennsylvania, USA
${ }^{10}$ Jefferson Lab, Newport News, Virginia, USA
${ }^{11}$ Tel Aviv University, Tel Aviv, Israel
${ }^{12}$ University of Virginia, Charlottesville, Virginia, USA
${ }^{13}$ Duke University, Durham, North Carolina, USA
${ }^{14}$ Institut für Kernphysik, Johannes Gutenberg Universität, Mainz 55099, Germany
${ }^{15}$ College of William ξ^{8} Mary, Williamsburg, Virginia, USA
${ }^{16}$ Norfolk State University, Norfolk, Virginia, USA

${ }^{17}$ Technical University of Darmstadt, Darmstadt, Germany
${ }^{18}$ Hebrew University of Jerusalem, Jerusalem, Israel
${ }^{19}$ St. Mary's University, Halifax, Nova Scotia, Canada
${ }^{20}$ Old Dominion University, Norfolk, Virginia, USA

Two years after the radius of muonic hydrogen was first reported, it is now known to be 7σ inconsistent with combined world $e p$ atom and scattering experiment results. We propose to measure $\mu^{ \pm} p$ and $e^{ \pm} p$ scattering in the same experiment at the same time, which allows a precise comparison of the proton radius determined with electrons and muons, and more generally provides the best test of lepton universality in a scattering experiment to date, about an order of magnitude improvement over previous tests. Measuring both particle polarities will allow a test of two-photon exchange at the $\approx 1 \%$ level, about a factor of four improvement on previous low momentum transfer determinations, and similar to the current generation of higher momentum transfer electron experiments. The experiment has the potential to demonstrate whether the μp and $e p$ interactions are consistent or different, and whether any difference results from novel physics or two-photon exchange.

36

${ }_{37}$ I. Motivation	4
${ }_{38}$ II. Experiment Overview	12
39 A. Introduction	12
B. Physics Reactions and Backgrounds	14
41 C. Overview of Equipment	20
42 D. Analysis and Corrections	22
${ }_{43}$ III. The $\pi \mathrm{M} 1$ Beam Line	24
44 A. Beam Line Simulations	26
45 B. Beam Line Shielding	29
${ }_{46}$ IV. Beam PID and Counting System	32
${ }_{47} \quad$ A. Identifying and Counting Particles through Timing Differences	33
48 B. Calibrating the Beam PID System	39
49 C. Summary	42
${ }_{50}$ V. Beam Momentum Determination	42
${ }_{51}$ VI. Beam Scintillating Fiber Detectors	47
52 A. Intermediate Focal Point Detector	47
53 1. Scintillating Fibers	48
54 2. Multianode PMTs	48
55 3. Light Collection Budget	49
56 4. SciFi Array Prototype	50
57 B. Target Scintillating Fiber Array	51
${ }_{58}$ C. SciFi Detectors for Beam Test	52
${ }_{59}$ VII. Beam GEM Detectors	53
${ }_{60}$ VIII. Target	62
${ }_{61}$ IX. Scattered-Particle Scintillators	68

B. Physics Reactions and Backgrounds 14
C. Overview of Equipment 20
D. Analysis and Corrections 22 24 26
B. Beam Line Shielding 29
V. Beam PID and Counting System 32
A. Identifying and Counting Particles through Timing Differences 33
B. Calibrating the Beam PID System 39
C. Summary 42
A. Intermediate Focal Point Detector 47

1. Scintillating Fibers 48
2. Multianode PMTs 48
3. Light Collection Budget 49
4. SciFi Array Prototype 50
B. Target Scintillating Fiber Array 51
C. SciFi Detectors for Beam Test 52

62 X. Wire Chambers	80
${ }_{63}$ XI. Trigger and DAQ	82
64 A. Trigger	82
65 B. Data Acquisition	85
66 C. Readout	86
${ }_{67}$ XII. Run Plan	88
${ }_{68}$ XIII. Data Analysis	89
69 A. Removing Backgrounds	90
70 1. RF Timing Cuts	91
71 2. Energy Loss Cuts	96
72 3. Target Reconstruction Cuts	97
73 XIV. Radiative Corrections	99
74 XV. Systematics	101
${ }_{75}$ XVI. Radius Extraction	105
${ }_{66}$ XVII. Commissioning and Calibration	109
77 A. Fall 2012 Measurements	110
78 B. Commissioning at the Start of the Experiment	112
79 C. Calibrations During the Experiment	115
80 XVIII. Collaboration	116
${ }_{81} \square$ References	117

${ }_{86}$ proton scattering analysis gave $r_{p}=0.895 \pm 0.018 \mathrm{fm}$ in the analysis of [2], which discussed 87 the needed Coulomb corrections and choice of an appropriate parameterization to fit form 88 factor data. This situation changed in summer 2010 when a Paul Scherrer Institute (PSI) ${ }_{89}$ experiment [3] reported that the radius determined from muonic hydrogen level transi90 tions is $0.842 \pm 0.001 \mathrm{fm}$, about 5σ off from the nearly order of magnitude less precise ${ }_{91}$ non-muonic measurements. We refer to this situation as the proton radius puzzle.

92 The proton radius puzzle is quite possibly more puzzling now than when it first ap${ }_{93}$ peared. First, while there have been a number of suggestions of possible resolutions to 94 the puzzle, several appear to be ruled out or severely constrained based on other measure${ }_{95}$ ments, and none are generally accepted. Second, two new electron scattering experiments 96 have reported their data along with new analyses of the proton radius, which increase ${ }_{97}$ the discrepancy to be greater than 7σ. One experiment was a precise cross section mea${ }_{98}$ surement [4] at Mainz that determined ≈ 1400 cross sections in the range $Q^{2}=0.01 \rightarrow 1$ ${ }_{99} \mathrm{GeV}^{2}$. The Mainz analysis of only their data with a wide range of functional forms gave 100 a proton electric radius of $0.879 \pm 0.008 \mathrm{fm}$. The second experiment [5] at Jefferson Lab 101 measured $\vec{e} p \rightarrow e^{\prime} \vec{p}$ to determine 1% form factor ratios in the range $\mathrm{Q}^{2}=0.3 \rightarrow 0.8 \mathrm{GeV}^{2}$. 102 A world analysis of data (excluding the Mainz data set) resulted in a radius of $0.870 \pm$ ${ }_{103} 0.010 \mathrm{fm}$, consistent with the Mainz electric radius determination - although there were 104 differences in the magnetic radius determination. A partial summary of recent proton 105 radius extractions is shown in Figure 1.

FIG. 1. A summary of some recent proton electric radius determinations, taken from [5].

The proton radius puzzle has attracted wide interest. There are several possible explanations for the puzzle.

- Beyond standard model physics. Several articles have appeared that propose possible novel physics that distinguishes μp from $e p$ interactions. At this point we are unaware of any proposed physics that is generally accepted as an explanation. As an example, in [6] the possibility of a new $U(1)_{R}$ gauge symmetry is discussed, which leads to different μp and $e p$ interactions. A proposed test is enhanced parity violation in μp scattering, orders of magnitude enhanced from the expected parity violation from Z^{0} exchange. However, Ref. [7 points out that this model involves a new vector gauge boson with mass around tens of MeV , which could be radiated from muons. The lack of observation of such a boson in, e.g, $K \rightarrow \mu \nu$ severely constrains such models. Additional experimental limits on this idea are discussed below.
- Novel two-photon exchange effects. When the interaction in the bound atom or in the scattering process involves the exchange of two photons, the intermediate state is an off-shell proton, possibly an excited state of the proton. The relativistic bound state problem remains a difficult and arguably unsolved problem. In [8, 9, 10, it was suggested that the two-photon exchange correction has an effect from the proton being off shell, leading to larger corrections in the μp case than in the ep case. The idea is controversial, and it appears at present consistency with other data makes this effect too small to explain the radius puzzle [11].
- Unexpected aspects of proton structure. Extracting the radius from the muonic hydrogen Lamb shift requires a proton structure correction. Atomic physics calculations result in $L^{t h}(m e V)=209.9779-5.2262\left\langle r_{p}^{2}\right\rangle+0.00913\left\langle r_{p}^{3}\right\rangle_{(2)}$ where $L^{t h}$ is the measured Lamb shift, $\left\langle r_{p}^{2}\right\rangle$ is the proton radius, and $\left\langle r_{p}^{3}\right\rangle_{(2)}$ is a correction from the third Zemach moment of the proton, given by $\left\langle r_{p}^{3}\right\rangle_{(2)}=(48 / \pi) \int_{0}^{\infty}\left(d q / q^{4}\right)\left[G_{E}^{2}(q)-\right.$ $\left.q^{2}\left\langle r_{p}^{2}\right\rangle / 3-1\right]$. The third Zemach moment depends mostly on $G_{E}\left(Q^{2}\right)$ at low Q^{2}. De Rújula [12, 13] suggested that $\left\langle r_{p}^{3}\right\rangle_{(2)}$ might be anomalously large. This result is inconsistent with standard fits of the proton electric form factor [14, 15]. This issue was investigated further in [16, which demonstrated that one can add bumps
to unmeasured low Q^{2} regions of $G_{E}\left(Q^{2}\right)$ that result in large $\left\langle r_{p}^{3}\right\rangle_{(2)}$. Such structures are not predicted by any model of the proton structure of which we are aware. A recent discussion of the atomic physics corrections and their uncertainties is in Ref. [17].
- Atomic Physics Corrections: While errors or issues in the atomic physics calculations are in principle a possibility, the radius puzzle has led to a reexamination of the atomic physics that goes into the radius extraction. No significant problems have been found, although there are general critiques of the theory - see, e.g., [18]. At this point, we are unaware of any criticisms of the value of the radius extracted from atomic hydrogen measurements, but there is a criticism that the uncertainty in the radius is not as good as claimed. The essential argument is that many of the atomic physics measurements are correlated, having been done by a few groups. The averaging of these measurements as if they were uncorrelated ignores the issue of correlated techniques and possibly errors. Thus, because of the correlations, the true uncertainty resulting from the atomic hydrogen measurements is not as small as given by the CODATA analysis.
- Issues in ep Scattering: The ep scattering data is corrected for radiative, including two-photon, corrections. The conventional radiative corrections are considered to be under control. The two-photon corrections have been an issue in higher Q^{2} $e p$ scattering, but all models and all evidence to date is that these corrections become relatively small at low Q^{2}. They have been considered at differing levels in the analyses of Bernauer et al. [4] and Zhan et al. [5, and it appears that the uncertainties in these corrections are insufficient to affect the μp vs. ep proton electric radius discrepancy ${ }^{1}$ Once the cross sections are established, the form factors and their slope at $Q^{2}=0$ need to be determined. One can fit Rosenbluth-separated form factors, or the cross sections and any polarization data directly. The use of a functional form might introduce a model dependence. Sick [2] emphasized the use of the continued fraction expansion and a restriction to low- Q^{2} data, along

[^0] $190=2.4715 \pm 0.016 \mathrm{fm}$. A subsequent muonic atom experiment[24] found $\left\langle r^{2}\right\rangle^{1 / 2}=2.483 \pm$ 1910.002 fm . There is evidently no μp vs. $e p$ issue in the carbon radius determination. One 192 can question whether one might have opposite effects in the case of μn vs. μp interactions, 193 whether the orbital size dominates so any $e p$ vs./ μp difference is suppressed, or whether

194 there might be important corrections - e.g., 2γ effects - omitted from the analyses.

FIG. 2. Reduced cross sections, $d \sigma / d \Omega / d \sigma / d \Omega_{M o t t}$, for μp elastic scattering, from Ellsworth et al. [25]. The data are somewhat below expectations from the dipole form factor parameterization. Use of the more modern Kelly parameterization [26] does not qualitatively change the result.

One of the better early μp elastic scattering experiments was Ellsworth et al. [25], 196 which found that cross sections in the range $Q^{2} \approx 0.5-1 \mathrm{GeV}^{2}$ were about 15% below 197 the standard dipole parameterization, $G_{E}=G_{M} / \mu_{p}=\left(1+Q^{2} / 0.71\right)^{-2}$ with Q^{2} in GeV^{2}, 198 and a similar percentage below modern form factor fits. as shown in Figure 2. While this 199 suggests an $e p$ vs. μp interaction difference, Ellsworth et al. interpreted the difference as 200 an upper limit on any difference in μp and $e p$ interactions. These data are too high in Q^{2} 201 to make any inferences about the proton radius. A subsequent experiment [27] covering $2020.15<Q^{2}<0.85 \mathrm{GeV}^{2}$ found cross sections about 8% smaller than the electron scattering ${ }_{203}$ results, similar to [25], and considered the μp and $e p$ scattering results consistent within 204 uncertainties. A final elastic scattering experiment [28] analyzed the ratio of proton elastic 205 form factors determined in μp and $e p$ scattering as $G_{\mu p}^{2} / G_{e p}^{2}=N\left(1+Q^{2} / \Lambda^{2}\right)^{-2}$, with the 206 result that the normalizations are consistent with unity at the level of 10%, and the 207 combined world μp data give $1 / \Lambda^{2}=0.051 \pm 0.024 \mathrm{GeV}^{-2}$, about 2.1σ from the electron208 muon universality expectation of 0 . For deep-inelastic scattering [29], a similar analysis

209 yields a normalization consistent with unity at the level of 4% and $1 / \Lambda^{2}=0.006 \pm 0.016$ ${ }_{210} \mathrm{GeV}^{-2}$. In summary, old comparisons of $e p$ and μp elastic scattering have sometimes 211 indicated several percent differences between μp and $e p$ with similar size uncertainties, 212 or sometimes indicated consistency with several percent uncertainties. The constraints ${ }_{213}$ on differing μp and $e p$ interactions are not very good. While $e p$ studies have advanced 214 significantly in the past decade, the μp work has not.

215 Two-photon exchange effects have also been tested in μp scattering. In 30, no evidence 216 was found for 2γ effects, with $\mu^{+} p$ vs. $\mu^{-} p$ elastic scattering cross section asymmetries ${ }_{217}$ consistent with 0 , with uncertainties from $4 \rightarrow 30 \%$, and with no visible nonlinearities in ${ }_{218}$ Rosenbluth separations at $Q^{2} \approx 0.3 \mathrm{GeV}^{2}$. The Rosenbluth cross sections were determined 219 to about 4%. Tests in $e p$ scattering [31] have found no nonlinearities even with $\approx 1 \%$ cross 220 sections; improved experiments are underway [32].

FIG. 3. Mainz results for the proton electric form factor determined by spline and polynomial fit analyses of the cross sections, along with the Kelly parameterization and a linear fit assuming the radius determined by $e p$ measurements, relative to expectations from a linear fit using the radius determined from μp atoms. The data show that there is curvature in the form factors indicative of higher order contributions beyond the radius term. The very lowest Q^{2} data are more consistent with a larger radius.

In $e p$ scattering, the radius is determined from the slope of the form factor at $Q^{2}=0$. 222 Here we consider the Mainz ep data in more detail, as it is related to the measurements that 223 we will propose. Figure 3 shows an indication of the proton radius from the Mainz data set. 224 The figure shows $G_{E}^{p}\left(Q^{2}\right)$ extracted from the cross sections using spline and polynomial 225 fit functions to the data. Here one sees that the lowest Q^{2} points are more consistent with 226 the larger radius found in $e p$ experiments, but that even before $0.02 \mathrm{GeV}^{2}$ the form factor 227 is starting to show nonlinearities. The Kelly parameterization [26] generally predicts the 228 trends of the data. The curvature at low Q^{2} indicates the importance of measuring at low ${ }_{229} Q^{2}$ to be sensitive to the radius.

Within the ep scattering community, the proton radius puzzle has led to studies about 231 how to push the $e p$ scattering measurements to lower Q^{2}, for the possibility that the 232 experiments do not go to low enough Q^{2} to see structure that might affect the radius 233 determination from atomic physics measurements, as well as the form factor extrapolation to $Q^{2}=0$. An experimental proposal PR12-11-106 [33] was made to Jefferson Lab PAC38; it was conditionally approved by the PAC, which requested "an updated proposal with final target details, credible simulation of beam requirements including halo and stability, and a well defined path to extend reliability of radiative corrections to Q^{2} down to 10^{-4}." But the JLab PAC considered the measurement of high importance, noting "Testing of this result is among the most timely and important measurements in physics." It has since been upgraded to fully approved status by PAC39 in June 2012. Based on the JLab 12GeV upgrade schedule, the experiment is not likely to run until 2016 or so. Studies have also been done of possible future experiments measuring high energy proton scattering on 243 electrons [34, or using an ep collider [35]. However, it should be noted that the atomic 244 hydrogen measurements are at even lower Q^{2} than the muonic hydrogen measurements, 245 and $e p$ scattering and atomic hydrogen are consistent.

To summarize the situation, we quote from the Particle Data Group [36]: "Most measurements of the radius of the proton involve electron-proton interactions, and most of 248 the more recent values agree with one another... However, a measurement using muonic 249 hydrogen finds $r_{p}=0.84184(67) \mathrm{fm}$, which is eight times more precise and seven stan250 dard deviations (using the CODATA 10 [37] error) from the electronic results... Until 251 the difference between the $e p$ and μp values is understood, it does not make much sense ${ }_{254}$ puzzle." (Emphasis added.) 257 cies in the theoretical treatment of the bound state problem, unexpected structure in the 258 proton form factors, or issues and / or underestimated uncertainties in the determination 259 of the radius from the actual experimental data. In the $e p$ scattering community, a much 260 discussed possible experimental approach to resolving this puzzle among the data from 61 muonic hydrogen, atomic ($e p$) hydrogen, and $e p$ elastic scattering is an improved low Q^{2} 262 ep elastic measurement. 266 electronic measurements or with muonic hydrogen. We will measure both μp and $e p$ 267 scattering at the same time to make the result more definitive - the relative uncertainties 68 between μp and $e p$ are much smaller than the absolute uncertainties, allowing a much better determination of the relative radius than the absolute radii. We will measure with both beam polarities to determine two-photon exchange effects - in much of our kinematic 1 range our statistical uncertainties are smaller than the estimated uncertainties from two272 photon exchange corrections.

[^1]

FIG. 4. Cartoon of the experimental systems in the $\pi \mathrm{M} 1$ area. In this view the beam proceeds vertically upward. Along the beamline we see (from bottom) a shielding wall, beam SciFi detector, three GEM chambers, the cryotarget and vacuum system, and the beam monitor scintillators. Scattered particles are detected by three drift chambers (shown as one blue box) and two planes of scintillator paddles, The light blue dotted circles indicate the annular table that will be used to support the chambers.
${ }_{279} \mathrm{MeV} / c, 153 \mathrm{MeV} / c$, and $210 \mathrm{MeV} / c$, with total particle fluxes of 10 MHz . We measure 280 the beam particles RF time with a Scintillating Fiber detector at the intermediate focal ${ }_{281}$ point of the channel, where particles are momentum dispersed.

As the beam particles enter the M1 area, shown in Figure 4, they pass through a 283 shielding wall intended to reduce the rate of secondaries from decays in flight incident 284 upon the detectors. The beam RF times are again measured in a scintillating fiber array 285 after the wall. The beam trajectories are determined in a set of three GEM chambers. 286 Particles then pass into the vacuum chamber and a liquid hydrogen cryotarget, where 287 they can scatter from liquid hydrogen, or from windows in the system. Particles largely 288 do not scatter, and continue into a high-precision beam monitoring scintillator. Those
existing, often standard technologies. The scintillating fiber arrays are reusing an existing detector. The GEM chambers are currently being used in the OLYMPUS experiment. Numerous hydrogen cryotargets exist; we plan on a new target based on systems used at Fermilab and Mainz. The scattered particle wire chambers are a copy of a system used at Jefferson Lab. The scattered particle scintillators are a copy of a new system developed for the Jefferson Lab 12-GeV upgrade. The novel feature of this experiment is assembling relatively modern high-rate detectors to measure a high-precision cross section in the PSI $\pi \mathrm{M} 1$ beam line.

B. Physics Reactions and Backgrounds

The desired reactions are ep and μp elastic scattering. The experiment must determine these cross sections precisely, while at the same time identifying and rejecting a number of background reactions higher in rate than the desired elastic scattering processes. The beam-induced background processes include the following:

- For incident μ 's: scattering from the target end windows, decaying in flight, and knocking out δ 's from the target. The rates for elastic muon scattering are shown in Figure 5, along with the projected statistical uncertainties for the experiment. For electrons the statistics are estimated be a few times better. The ratio of rates for elastic μ and e scattering from Carbon and Aluminum versus Hydrogen are shown in Figure 6, which illustrates the advantage of using a kapton target cell rather than an aluminum target cell. This background will need to be subtracted.
- For incident e 's: scattering from the target end windows, and Moller and Bhabha scattering from atomic electrons. Positrons can also annihilate with atomic electrons. Both electrons and positrons radiate photons, to which we are insensitive, but the photons can knock electrons out of the target into the detectors.
- For incident π 's: all processes are backgrounds. These include scattering from the LH_{2} and target end windows, decaying in flight, and knocking out δ 's. Charge exchange reactions are possible, and are of similar magnitude to the elastic and

FIG. 5. (Left) Rates for elastic μ scattering from Hydrogen as a function of angle and beam energy. The thickness of the target was assumed to be 4 cm . Electron scattering distributions are very similarly shaped to the muon scattering distributions. (Right) Estimated statistical precision that will be obtained in this measurement for $\mu^{+} p$, assuming the data follow the Kelly form factors. Data from the 3 different momentum settings are slightly offset for better viewability. Uncertainties for $\mu^{-} p$ are somewhat worse, whereas uncertainties for $e^{ \pm} p$ are significantly better. inelastic scattering, though the ensuing $\pi^{0} \rightarrow \gamma \gamma$ decay generates two tens-of-MeV γ 's to which our detectors are relatively insensitive.

In addition there are possible cosmic ray events and accidental coincidences, which we will consider later. We neglect the following beam-induced backgrounds, as their rates are small corrections to our background estimates.

- Quasifree scattering from the target end windows. Since the elastic scattering cross section is proportional to Z^{2}, it is about an order of magnitude larger, at low Q^{2}, than the quasifree scattering, which is proportional to Z. Thus, the quasifree scattering rate is small compared to the elastic rate.
- Electroproduction of π 's. The $153 \mathrm{MeV} / c$ setting is just above electroproduction threshold for the e beam, but the electroproduction cross section is small compared to the elastic scattering cross section.
- Elastic and quasifree π scattering from the target end windows. Since the cross section for strong-interaction processes on nuclei scales roughly as $A^{2 / 3}$, with an order of magnitude fewer nuclei in the end windows than in the liquid hydrogen the

FIG. 6. Ratio of rates for elastic μ scattering for Carbon and Aluminum relative to Hydrogen as a function of angle and beam energy. The thicknesses of the materials were $250 \mu \mathrm{~m}$ for $\mathrm{C}, 200 \mu \mathrm{~m}$ for Al , and 4 cm for H . The nuclear form factors fall off faster with Q^{2} as expected. The estimated rate for kapton is about 3 times smaller than for aluminum.

Abstract

rates of π-induced processes on the end caps are a small correction to the rates of πp processes.

Background processes affect the experiment in several ways, leading to singles rates in the detectors which make it difficult to analyze events and leading to triggers (sometimes from 340 accidental coincidences) limiting the read out of the elastic scattering events of interest. ${ }_{341}$ At the analysis level the background events if not sufficiently suppressed can be counted ${ }_{342}$ as elastic scattering events which affects the cross section determination.

TABLE I. Estimated flux of beam particles in MHz for a primary proton beam current of 2 mA , and the flux if the total for all particles is limited to 10 MHz .

Momentum (MeV / c)	115	153	210
μ^{+}	1	$2.5 \rightarrow 1.5$	$5 \rightarrow 0.62$
e^{+}	6	$7 \rightarrow 4.2$	$6 \rightarrow 0.74$
π^{+}	0.12	$7 \rightarrow 4.2$	$70 \rightarrow 8.64$
μ^{-}	0.2	0.5	$1 \rightarrow 0.5$
e^{-}	6	8	$7 \rightarrow 3.5$
π^{-}	0.023	1.4	$12 \rightarrow 6$

To estimate rates for processes we have to first know the beam fluxes. The π and e 345 fluxes at the chosen beam energies, based on figures of previous measurements, and also ${ }_{346}$ estimate the μ flux based on negative polarity RF time spectra at $270 \mathrm{MeV} / c(1.3 \%$ of 347 the beam is μ 's) and positive polarity RF time spectra at $170 \mathrm{MeV} / c(15 \%$ of the beam 348 is μ 's). The μ estimates are also based on a comment in [38] that the μ flux falls slower 349 than the π flux as the energy decreases and an assumption that the μ / π ratio is the same 350 for both polarities at each energy. The μ rates at $153 \mathrm{MeV} / c$ are much more certain than 351 the interpolation to $210 \mathrm{MeV} / c$ or the extrapolations to $115 \mathrm{MeV} / c$.

We now present in Table II estimated singles and trigger rates for all processes at 354 summarize Geant4 simulation rates reported later in Table XII, which in principle include 355 all processes - for π 's and μ 's, scattering from the target, decays in flight, and δ knockout, 356 and for $e^{-\prime} \mathrm{s}\left(e^{+\prime} \mathrm{s}\right)$ scattering from the target including Moller (Bhabha) scattering, and 357 for e^{+}annihilation. The reported singles rate is the integrated rate for all scintillator 358 paddles in a wall. In many cases the rate is dominated by forward angle particles and 359 the most forward scintillator has about half of the total rate quoted. For the π 's, we also 360 consider the efficiency of the beam PID at rejecting the π events; the efficiency factors are 361 taken from Table V below.

In all cases the assumed target is 4 cm of LH_{2}, with 0.125 mm kapton entrance and exit 363 windows. The simulation includes the shielding, target, and scattered particle scintillators 364 shown in Figure 4. We have separately broken out the rate for the elastic scattering 365 processes from the target and end windows, as trajectory reconstruction and RF time 366 cuts should efficiently remove all other backgrounds. This was done as a standalone 367 calculation.

The background rates were in some cases crosschecked with standalone estimates. For 369 example, the rates for $\pi^{ \pm} p$ scattering were also evaluated using cross sections from the 370 SAID partial wave analysis, available online at http://gwdac.phys.gwu.edu/. The par371 ticle decays in flight were also approximately estimated, and agreed at about the 20% level 372 with the more detailed Geant4 estimate.

TABLE II. Rates for both detector arms combined for various processes in Hz (or kHz) with the estimated beam fluxes totaling 10 MHz for all particle types. The "+" momenta indicate positive polarity particles, while the "-" momenta indicate negative polarity particles. For elastic processes from the target the singles and trigger rates are basically equal, but for particles from decays in flight or low energy particles knocked out of the target this is not the case. The rates are for both detector arms combined. The π-induced processes also take into consideration the reduction in rate from beam particle identification.

Momentum (MeV / c)	+115	+153	+210	-115	-153	-210
$\mu+p$ elastic scattering	$\mathbf{5 . 3}$	$\mathbf{5 . 6}$	$\mathbf{1 . 3}$	$\mathbf{1 . 1}$	$\mathbf{1 . 8}$	$\mathbf{1 . 1}$
$\mu+$ kapton elastic scattering	1.7	1.8	0.4	0.4	0.6	0.4
Geant4: μ singles	1600	1740	1080	320	560	940
Geant4: μ triggers	760	840	240	80	280	200
$e+p$ elastic scattering	$\mathbf{5 5}$	$\mathbf{2 2}$	$\mathbf{1 . 9}$	$\mathbf{5 5}$	$\mathbf{4 0}$	$\mathbf{9}$
$e+$ kapton elastic scattering	18	7	0.6	18	13	3
Geant4: e singles	60 k	42 k	7.6 k	64 k	86 k	38 k
Geant4: e triggers	3 k	2.2 k	400	4 k	5.2 k	2.2 k
Geant4: π singles	12 k	280 k	290 k	2.2 k	94 k	200 k
Geant4: π triggers	7 k	220 k	250 k	1.4 k	74 k	176 k
Geant4: π triggers + beam PID	0	22	76	0	8	52
Total singles rate	74 k	324 k	300 k	66 k	181 k	239 k
Total Geant4 triggers + beam PID	3760	3060	720	4080	5500	2450

The first point to note concerning the estimated rates is that no individual detector sees ${ }_{374}$ more than $\approx 160 \mathrm{kHz}$ total rate in the individual detector systems. For the first plane of ${ }_{375}$ scintillators, with 17 paddles, the average rate in the paddles is then small, about 10 kHz , ${ }_{376}$ in the worst kinematics. For the first wire chamber the rate corresponds to $120 \mathrm{~Hz} / \mathrm{cm}$ of ${ }_{377}$ wire, about 1% of the usual estimate for the gas physics limit, or about 5 kHz / wire. The 378 forward most paddles and wires have the highest rates, and in the worst kinematics the 379 forward-most paddles on each side will have about half the total rate in the scintillator 380 hodoscope, or about 81 kHz , which is still quite moderately small. Similarly, the forward381 most wire in the wire chamber will continue to have a modest rate, far below the gas 382 physics limit and with nearly negligible probability of accidental coincidences - $P_{\text {acc }} \approx 15$ $383 \mathrm{kHz} \times 100 \mathrm{~ns}=0.15 \%$.

From these estimates it is also apparent that the demands on the data acquisition 385 398 upstream of the target with low-energy forward going Mollers and Bhabhas. These events 399 can be suppressed with relatively thin shielding just before the target and after the last GEM, or by raising the threshold on the rear plane of scintillators. We are continuing to 401 study these options.

TABLE III. Top: Accidental trigger rates in Hz for π-induced processes to be randomly coincident with e or μ beam particles. Bottom: The probability that there is a beam π when there is a beam μ - or e-induced event. Both estimates assume beam fluxes totaling 10 MHz for all particle types. The " + " momenta indicate positive polarity particles, while the "-" momenta indicate negative polarity particles.

Momentum (MeV / c)	+115	+153	+210	-115	-153	-210
$\%$ of pulses with e^{\prime} 's or μ 's	14.0	11.3	2.7	12.4	16.8	8.0
Geant4: π triggers	7 kHz	220 kHz	250 kHz	1.4 kHz	74 kHz	176 kHz
Accidental coincidence rate	1 kHz	25 kHz	7 kHz	170 Hz	12 kHz	14 kHz
fraction of beam pulses with π 's	0.24%	8.8%	17.3%	0.05%	2.8%	12%

Finally we need to consider the subject of accidentals. Generally we want to trigger the ${ }_{403}$ DAQ whenever there is a beam e - or μ-induced event from the target. We do not want to 404 trigger on a beam π-induced event. But the total rate of e and μ beam particles, assuming

10 MHz total rates, ranges from $1.36 \rightarrow 8.5 \mathrm{MHz}$, or, as there is 50 MHz beam, about $4062.7 \% \rightarrow 17 \%$ of the time there is a π-induced event it will be randomly coincident with 407 an e or μ beam particle. The same consideration applies to cosmic rays. The estimated 408 accidental trigger rates for π-induced events - elastic scattering and decays in flight - are 409 shown in Table III. The accidental coincidences of π-induced events with e or μ beam ${ }_{410}$ particles lead to rates that are generally too large to be read out, except at $-115 \mathrm{MeV} / c$, 411 and if allowed will lead to large dead times. The solution to this is to use the beam PID ${ }_{412}$ system to identify pions and use the pion ID signal as a veto - if there are π 's in the ${ }_{413}$ same RF bucket as an e or μ, the event will not be read out. The FPGA PID system is ${ }_{414}$ estimated to generally be $>99 \%$ efficient at identifying particles, so in the worst case at ${ }_{415}+153 \mathrm{MeV} / c$, the 25 kHz accidental rate will only be reduced to about 250 Hz .

Table IIT also shows the probability that there is an accidentally coincident beam π with ${ }_{417}$ a μ or e induced event, The probability ranges from 0.05% up to 17.3%. Thus, in the worst ${ }_{418}$ case at $+210 \mathrm{MeV} / c$ the statistics decrease by 17.3% and the statistical uncertainty only ${ }_{419}$ increases 8.7% (relative) from vetoing events with beam π 's also present. We conclude ${ }_{420}$ that vetoing triggers when there is a beam π significantly reduces the random coincidence 421 and readout rates while having little impact on the statistical precision of the experiment.

C. Overview of Equipment

Our intent is to measure accurate high-statistics cross sections for μp and $e p$ elastic 424 scattering. To our knowledge, no one has measured precise cross sections with a 4π spec425 trometer. The basic problem is knowing precisely the scattering kinematics. Most 4π 426 spectrometers that detect particles have a solenoidal or toroidal field configuration, and 427 knowledge of the field and the positioning of the detectors limits cross sections. The 428 most precise scattering cross sections to date have been measured with small acceptance 429 spectrometers. However, the low flux of the μ beam does not allow a statistically precise 430 cross section to be measured in a reasonable time with a small acceptance spectrome431 ter. Finally, given the beam properties and the lack of inelastic processes, a magnetic 432 spectrometer does not appear to significantly improve our ability to subtract, e.g., target 433 cell wall or other backgrounds. Thus, we propose here to measure cross sections with a

434 435 and kinematic reconstructions in the experiment.

Experiment features include the following:

- The experiment is planned for the $\pi \mathrm{M} 1$ beam line, which to our knowledge has not previously been used for such an experiment, and for which the μ beam properties are not well understood. We will commence a series of measurements to determine the μ beam properties.
- The beam momentum must be known at the 0.1% level. While this can be done directly for the π beam using the dispersion at the intermediate focal point DR8, the validity of this technique for the μ beam has not, to our knowledge, been established. We will describe how the beam energy, and the spectrum after energy loss in the detectors, can be directly determined using time-of-flight techniques, to better than 0.1% at low beam momentum.
- The μ flux is not well known. We will describe how we plan to determine the μ flux in test measurements in fall 2012 for planning purposes, and how we will determine the μ and e flux by counting the beam particles during the experiment.
- The rates of particles in the detector from decays in flight are moderately large, such that accidental coincidences with beam e 's or μ 's is a potential problem. We plan to significantly suppress these backgrounds by shielding the beam line.
- The scattering angle must be precisely determined. We will describe how we plan to use GEM chambers to measure beam particles and conventional wire chambers to measure scattered particle trajectories, and how we plan to align the chambers to a precision of $\approx 0.5 \mathrm{mr}$, so that angle resolution is limited essentially by multiple scattering.
- The efficiency of the scattered particle detectors must be determined. We will describe both the detection efficiencies and dead times for the detectors, and the tracking efficiency for the wire chambers.
- The data acquisition system live time must be determined. We will describe the common techniques we will use to determine the system live time.
- The target thickness must be precisely known. Target thickness is one of the largest absolute uncertainties, but with the design of the experiment - measuring both $e p$ and μp scattering at all angles at the same time - it becomes a small relative uncertainty.

D. Analysis and Corrections

Once the data are taken, the analysis must be performed. Event data are analyzed to determine yields. Various corrections are needed to determine cross sections. Some corrections (e.g., efficiencies) result mostly from the data while others (e.g., Coulomb corrections) are of a more theoretical nature. The form factors and the proton radius result from fits to the cross sections. Systematic uncertainties need to be evaluated.

The analysis procedures are fairly standard for a scattering experiment. For scintillator elements, pulse heights and times are determined. For chamber elements, wires hit and drift times are determined, and are used to generate tracks. The incoming and outgoing tracks are used to construct scattering angle and target variables. These values in addition to the timing are used to determine the type of the incident particle and the kinematics of the scattering event. After cuts are applied, we have a number of scattering events of interest, and target data minus empty target data give a net number of counts which, after being corrected for various efficiencies, are used to generate the scattering cross sections. The above outline focuses on the event data. Analysis is also needed of slow controls and scaler data are needed for the cross sections as well. For example, the slow controls data are used to determine the target thickness, and scaler data are used to determine the incident flux. Detector efficiencies are largely determined through studies of the event data.

Once the raw cross sections are determined, various corrections are needed. These include Coulomb corrections, and radiative corrections, including two-photon corrections.

The primary goals of the measurement are an extraction of the proton radius, which depends on the Q^{2}-dependence of the data, and the comparison of $\mathrm{e}^{ \pm}$- p and $\mu^{ \pm}$- p cross 492 and negative leptons), systematics which are independent of the lepton beam (e.g. target 493 thickness, detector offsets, etc...) largely or completely cancel. Thus, the relative system494 atic uncertainties that go into the proton radius extraction are estimated to be $\approx 0.5 \%$, 495 with some additional cancellation in the comparison of the radius as extracted from elec496 tron or muon scattering, or in the direct comparison of the electron and muon scattering ${ }^{497}$ cross sections. In addition, combining the data from positive and negative leptons allows ${ }^{998}$ for an extraction where the charge-dependent radiative corrections (Coulomb corrections, hard two-photon exchange effects, and lepton/proton bremsstrahlung interference terms) cancel, allowing for a comparison of the measurements and extraction of the radius free 501 of this significant correction [39, 40, 41, 42].

The extraction of the radius from the cross section introduces additional systematic or model-dependent uncertainties. An extraction of the radius using the higher beam momentum settings yields an uncertainty in the extracted radius of $\approx 0.0140 \mathrm{fm}$ for muon scattering, corresponding to a 1.6% measurement of the radius, with the statistics and 5 experimental systematic uncertainties dominating the total uncertainty. This estimate 7 accounts for the statistical and systematic uncertainty, including the correction for backgrounds from scattering in the target window. The fit includes normalization factors for the different beam momentum settings, so that the uncertainty associated with the knowl510 edge of the normalization is propagated into the fit, and also includes an estimate of the 511 error made when fitting to a second-order polynomial.

Taking only the lowest beam momentum setting, the Q^{2} range is such that a linear 513 fit is sufficient to extract the radius, which yields an uncertainty of 0.015 fm , yielding 514 a largely independent extraction where the uncertainty is dominated by the uncertainty 515 associated with the linear truncation. This uncertainty is difficult to estimate precisely, 516 but we take a conservative approach assuming a simple linear fit in Q^{2}, rather than a first 517 order expansion with a better physics motivation (e.g. a dipole form 43] or continued 518 fraction [2] expansion). The combined uncertainty based on these two extractions should 519 be close to 1% for the μ^{+}and μ^{-}measurements, and somewhat better for e^{+}and e^{-}due 520 to the improved statistical precision.

III. THE π M1 BEAM LINE

In this section we briefly review properties and simulations of the π beam, and discuss 66 estimates for the μ beam. The $\pi \mathrm{M} 1$ channel views the M production target at an angle of 22°. The channel includes a number of focusing quads, two dipoles which each bend the beam 75°, two sets of jaws (FS11 to reduce the flux, FS12 to limit the momentum range in the dispersed beam tune), and a no-longer-functioning electrostatic separator.

The default tune is point-to-point, producing an image of the production target at a ${ }_{541}$ distance of about 24 m . The tune also has a dispersed beam at the intermediate focal ${ }_{542}$ point, at a distance of $\approx 12 \mathrm{~m}$ from the production target, with a dispersion of $7 \mathrm{~cm} / \%$ 543 and a resolution of 0.1%.

The π M1 channel fluxes, measured by Schumacher and Sennhauser in 1987 [38], are shown in Figure 7. Fluxes for and properties of the μ 's coming through the channel are not as well established, as discussed with our estimates in Section IIB. We do not attempt 547 to estimate the actual fluxes or the ratio of the μ flux to the π flux from simulations of ${ }_{548}$ physics at the production target. To do so requires an accurate physics model of production ${ }_{549}$ processes at the M target. Instead, in this section we discuss the results of a TURTLE
${ }_{550}$ simulation intended to investigate the widths and angular divergences of the beam. The 551 simulation used a smooth distribution of π 's thrown roughly in the direction of the $\pi \mathrm{M} 1$ 552 channel, and of μ 's resulting from decays of these π 's.
${ }_{553}$ Because π 's and μ 's are unstable particles, they continuously decay producing a beam 554 halo of μ 's and e 's, respectively. For our range of momenta the decay rates are of order ${ }_{555} 10 \% / \mathrm{m}$ for π 's and $0.1 \% / \mathrm{m}$ for μ 's. The desired muon beam then consists of 2 components, one component being μ 's produced in the region of the M production target, which 557 as a beam have properties presumably similar to those of the π beam, and the second ${ }_{558}$ component being μ 's produced from π decays in flight generally within or after the $\pi \mathrm{M} 1$ 559 channel. Similarly, the electron beam has a (relatively small) component from the decays ${ }_{560}$ of muons. Figure 8 shows that the π decays produce μ 's at forward angles, leading to an 561 unwanted background that is generated at minimum 0.5 m upstream of the target (see ${ }_{562}$ Table XIII. Figure 9 shows that the μ decays produce e 's over a wide range of angles, ${ }_{563}$ due to the 3-body nature of the decay. However, there is a much smaller absolute rate of ${ }_{564} \mu$ decays.

FIG. 7. Fluxes of e 's and π 's in the $\pi \mathrm{M} 1$ channel for a $200 \mu \mathrm{~A}$ proton beam incident on a 2 mm thick carbon production target. The measurements used a $3 \mathrm{~cm} \times 4 \mathrm{~cm}$ scintillator 4 mm thick. The figure is taken from the report by Schumacher and Sennhauser.

FIG. 8. (Left) Simulation of π decays in flight showing μ momentum vs. angle for the three selected beam momenta. (Right) Simulation showing the angular distribution of muons from the decay in flight of $115 \mathrm{MeV} / c$ pions.

FIG. 9. (Left) Simulation of e momentum vs. angle for μ decays in flight for a muon momentum of $153 \mathrm{MeV} / c$. (Right) Simulation showing the angular distribution of electrons from the decay in flight of $153 \mathrm{MeV} / c$ pions. The distribution shifts slightly to smaller or larger angles if the muons are polarized.

A. Beam Line Simulations

A summary of the properties of the π beam for a standard beam tune is shown in Figure 10. The dispersion of the beam at the intermediate focus and the few cm size of

We have studied the distribution of all μ 's reaching the target region using TURTLE.

FIG. 10. TURTLE simulations of the $\pi \mathrm{M} 1 \pi$ beam. (Left) The beam envelope. The top part of the figure is the vertical or y direction. The bottom part of the figure is the horizontal or x or dispersion direction. Tick marks indicate 10 cm in the vertical direction and 2 m in the horizontal direction. The dispersion of the beam at the intermediate focal point ("IFOC") can be seen. (Right) The beam spot at the target position. The outer solid curve indicates the 2σ limits. Because the beam cuts off sharply in the y direction, the full width is also about $\pm 1 \mathrm{~cm}$, whereas in the x direction small tails of the beam reach to $\approx \pm 2.5 \mathrm{~cm}$ - about 0.5% of π 's are outside the central $\pm 2 \mathrm{~cm}$. 574 broadly similar to the π distribution, with both a few cm wide at the target in both x 575 and y directions. The tail in the x distribution appears to be correlated to a tail in the $576 x^{\prime}$ distribution (not shown) to $+x^{\prime}$ and to tails in the momentum distribution. It appears, 577 based on simulations with and without channel apertures, that the satellite peak results 578 from events passing into unphysical regions of the modeled magnetic field that would in 579 reality be removed by apertures in the channel. The divergence of the μ 's in the target ${ }_{80}$ region (not shown) is also similar to the divergence of the π 's. The differences we see here 581 between π and μ distributions will need to be confirmed with beam line measurements.

Figure 12 shows the TURTLE simulations of π 's and μ 's from the production target only at the intermediate focal point. Here the x distributions of π 's and μ 's are similar,

FIG. 11. Simulation of the distributions at the scattering target of pions (left) and muons (right) that come from the production target. Note that the horizontal scales are about a factor of 10 different. While the statistics are poor, the distributions seem to be generally similar, except for the tail in the x distribution. The y distribution of μ 's is about twice the size of the y distribution of π 's.

584 but the μy distribution is much broader. For the angle divergences (not shown), the μ $585 x^{\prime}$ distribution is, like the x distribution, slightly wider, $\approx 30 \mathrm{mr}$ vs 25 mr . But the μ $586 y^{\prime}$ distribution is, like the y distribution, about 6 x wider, $\approx 100 \mathrm{mr}$ vs 15 mr . While the 587 distributions at the IFP are much broader in y and y^{\prime}, the significantly greater number of 588μ 's in the IFP spectra as compared to the target spectra suggests that apertures in the 589 beam line remove the μ 's that are outside the π distribution phase space. This tentative 590 conclusion will need to be verified with measurements. These observations suggest that 591 the x position at the IFP remains a good measure of the beam momentum, for μ 's that

FIG. 12. Simulation of the distributions at the intermediate focal point of pions (left) and muons (right) that come from the production target. Note that the horizontal scales for the y distributions are a factor of 4 different. While the x distribution are basically similar, with the μ spectrum less sharply cut off, the y distribution for the μ 's is several times wider.

592 reach the scattering target, but at this point it is not clear if the resolution remains at the ${ }_{593} 0.1 \%$ level or is a few times worse. Again, measurements will be needed to determine the 594 resolution. These measurements are discussed in Section \mathbb{V}

B. Beam Line Shielding

A sample spectrum demonstrating the benefit of beam line shielding is shown in Fig${ }_{597}$ ure 13. The absolute scale in the figure is not important, but the relative scale between the ${ }_{598}$ curves is based on the estimated flux for positive polarity particles given in Table 亿. With

FIG. 13. GEANT simulation of the RF time spectrum for positive polarity particles at the scintillators with $115 \mathrm{MeV} / c$ beam momentum without shielding (left) and with beam line shielding (right). In the left panel, the counts from $\mu \rightarrow e \nu \bar{\nu}$ decays and $\pi \rightarrow \mu \nu$ decays are scaled down by a factor of 2 and 5 , respectively. These are raw RF time spectra, which do not account for reductions in the π-induced events from beam PID cuts, from removal of events that do not track back to the target, or from flight path corrections.

FIG. 14. GEANT simulation of the RF time spectrum for negative polarity particles at the scintillators with $210 \mathrm{MeV} / c$ beam momentum without shielding (left) and with beam line shielding (right). In the left panel, the counts from $\mu \rightarrow e \nu \bar{\nu}$ decays and $\pi \rightarrow \mu \nu$ decays are scaled down by a factor of 3 and 3000, respectively, while in the right panel the $\pi \rightarrow \mu \nu$ decays are scaled down by a factor of 20 . These are raw RF time spectra, which do not account for reductions in the π-induced events from beam PID cuts, from removal of events that do not track back to the target, or from flight path corrections.

FIG. 15. GEANT simulation of the reduction in the number of muons from π decay (left) and electrons from μ decay (right) as a function of the thickness of concrete shielding. The shielding is oriented perpendicular to the beam, and the $\cos \theta$ increase in the thickness of concrete is included.

599 the addition of 50 cm of concrete shielding around the beam pipe located 0.9 m upstream 600 of the target (right panel), the tails of the μ and π decay spectra are significantly reduced. 601 At $115 \mathrm{MeV} / c$, there is essentially no overlap of muons from π decay in the ep elastic signal 602 or electrons from μ decay in the μp elastic signal. The event rate at the scintillators is 603 reduced by a factor of 50 for π decays and a factor of 5 for μ decays. The trigger rates will 604 be much lower when RF timing for PID is considered, but these reductions help reduce 605 the demand on the detector system.

606 Figure 14 shows the RF timing peaks for $210 \mathrm{MeV} / c$ without and with beam line shield607 ing, where the estimated flux for negative polarity particles is used for relative weighting. 608 At $210 \mathrm{MeV} / c$ the RF timing peaks are better separated, however there is a very large 609 flux of π and μ decays hitting the scintillator which lead to tails overlapping the desired 610 elastic signals. The event rates are reduced with the addition of shielding by a factor of 611400 for π decays and a factor of 6 for μ decays. Again, these event rates will be highly 612 suppressed at the trigger level from RF timing. The remaining events can be removed at ${ }_{613}$ the analysis level by the additional requirement that the particle track projects back to 614 the target.

615 The simulations used a shielding wall that is 50 cm thick and located with its end 0.9 m 616 upstream of the target. This thickness is based on readily available shielding at PSI and ${ }_{617}$ is much thicker than what is actually needed. A calculation of the thickness needed for

618

 620 number of decay events that hit the scintillator per incoming particle. In all cases, the ${ }_{621}$ thickness of shielding required is well below the 50 cm thick concrete that is available for 622 use.${ }_{623}$ Thus, the use of a 50 cm thick shielding wall before the target significantly reduces ${ }_{624}$ experimental backgrounds. As engineering designs develop we will study whether it is ${ }_{625}$ possible and beneficial in practice to add additional shielding to the sides of the GEM 626 chambers to further reduce backgrounds from particle decays in flight.

IV. BEAM PID AND COUNTING SYSTEM

The beam particle identification (PID) counting system consists of the following:

- a scintillating fiber detector at the intermediate focal point, DR8, about 12.2 m from the π production target. The scintillating fiber detectors mentioned in this section are described further in Section VI. The detector, to be discussed in more detail later, consists of two offset planes each with 110 2-mm fibers.
- a scintillating fiber detector just upstream of the target. In the simulations shown below, this detector is assumed to be a 23.5 m flight path from the π production target. This detector consists of 3 planes of $2-\mathrm{mm}$ fibers in XYU orientation, with an active area of about $3 \mathrm{~cm} \times 3 \mathrm{~cm}$.
- a set of custom FPGA boards. These boards have inputs from the SciFi fibers and the beam RF signal. They determine an RF time for each hit and output a μ, e, or π signal, on separate channels, or no signal.
- additional logic, which we expect to set up in a commercial CAEN v1495 VME board. If the FPGAs identify for both SciFi detectors μ or e or π RF times, the corresponding coincidence signal is sent to scalers to be counted and to the data

[^2]

FIG. 16. RF time distributions at the intermediate focal point (left) and target (right) for 115 MeV / c beam momentum, assuming 1 ns resolution in the beam scintillators. The absolute number of counts is arbitrary, but the relative number of counts for each particle type is based on estimates for positive polarity particles in the proposal. The μ peak overlaps the e peak at the IFP but the π peak at the target. The e peak overlaps the π and μ peaks at the IFP but only the π peak at the target. The short vertical lines indicate cuts used to quantify PID performance, described in the text. 648 the type of beam particle responsible for any scattering event, so that $\pi-i n d u c e d$ events 649 which are not the intent of this measurement, can be suppressed. In this section we will 650 demonstrate how the system provides a high efficiency for identifying particles, and a low 651 probability for misidentifying particles, at the hardware level.

A. Identifying and Counting Particles through Timing Differences

${ }_{653}$ The ability of the system to identify beam particle types is examined in Figures 16, 17, ${ }_{654} 18$, which were generated assuming that the beam scintillators have 1 ns time resolution

FIG. 17. RF time distributions at the intermediate focal point (left) and target (right) for 153 MeV / c beam momentum, assuming 1 ns resolution in the beam scintillators. The absolute number of counts is arbitrary, but the relative number of counts for each particle type is based on estimates for positive polarity particles in the proposal. The μ peak overlaps the π peak at the IFP but the e peak at the target. The e peak overlaps the π peak at the IFP but the μ peak at the target. The short vertical lines indicate cuts used to quantify PID performance, described in the text.
${ }_{655}(\sigma)$ in hardware, and the channel is set to the full 3% momentum bite. For each of 656 the proposed beam energies, it can be seen that the RF time peaks for the particles are ${ }^{657}$ generally well separated, overlapping only in the tails, so that the combination of the RF 658 times from the two detectors can efficiently identify the beam particle type in hardware. ${ }_{659}$ Determining whether a particle is in the e, μ, or π RF time peak in hardware with 660 conventional NIM electronics is likely prohibitively difficult. We are instead designing an 661 FPGA based particle identification system that has the beam RF time signal and beam 662 scintillator signals as inputs. The design work will be done by Ed Bartz, of the Physics ${ }_{663}$ electronics shop at Rutgers University, who is an experienced designer of FPGA and other 664 systems who has worked with us on a number of projects. Ed is currently working mostly 665 with the Rutgers high energy group on LHC projects, on which he has collaborated with 66 PSI personnel. We currently expect that the LHC work will require Ed's time until fall ${ }_{667}$ 2012, at which point he can start design of the system discussed here. Our tentative plan 668 for the system has 10 32-channel FPGA boards.

669 The FPGAs will subdivide the $\approx 20 \mathrm{~ns}$ RF period into 161.25 -ns bins. The FPGA will

FIG. 18. RF time distributions at the intermediate focal point (left) and target (right) for 210 $\mathrm{MeV} / \mathrm{c}$ beam momentum, assuming 1 ns resolution in the beam scintillators. The absolute number of counts is arbitrary, but the relative number of counts for each particle type is based on estimates for positive polarity particles in the proposal. The μ peak overlaps both e and π peaks at the IFP but neither peak at the target. The e peak overlaps the μ peak at the IFP but the π peak at the target. The short vertical lines indicate cuts used to quantify PID performance, described in the text.

670 be programmable, so that a signal appearing in a particular bin might lead to an e or ${ }_{671} \mu$ or π output, or no output at all - since the tails of the timing peaks can overlap, an ${ }_{672}$ input signal can lead to more than one type of output signal. Each FPGA board will OR 673 together the separate particle type signals from all channels on the board and output the 674 resulting e, μ, and π signals.
${ }_{675}$ We will then OR together separately the e, μ, and π outputs of all modules for a given 676 detector, and AND together the DR8 and target detectors to determine if there is an e or ${ }_{677} \mu$ or π passing through both SciFi detectors. These signals are sent to scalers for counting 678 and to the data acquisition trigger logic. In addition to sending the final e or μ and π 679 signals to the scalers, we also plan to send these signals on an individual plane basis, and 680 also to send the combinations e AND μ, e AND π, and μ AND π to identify accidental 681 coincidences of different particle types. The planned system does not allow us to identify 682 accidental coincidences of the same particle type whose signals are processed by the same 683 FPGA board.

TABLE IV. Probability of identifying a particle as given type from RF time measured at a single beam SciFi detector.

Momentum (MeV / c)	Detector	Particle Type	Fraction e ID	Fraction μ ID	Fraction π ID
115	IFP	e	0.9983	0.0245	0.2780
115	IFP	μ	0.0135	0.9959	0.0000
115	IFP	π	0.4227	0.0000	0.9948
115	target	e	0.9978	0.0000	0.2028
115	target	μ	0.0001	0.9955	0.3666
115	target	π	0.3112	0.2892	0.9917
153	IFP	e	0.9983	0.0000	0.0248
153	IFP	μ	0.0000	0.9978	0.0017
153	IFP	π	0.0084	0.0063	0.9936
153	target	e	0.9977	0.3359	0.0000
153	target	μ	0.2896	0.9970	0.0000
153	target	π	0.0001	0.0000	0.9904
210	IFP	e	0.9982	0.0324	0.0000
210	IFP	μ	0.0379	0.9980	0.2339
210	IFP	π	0.0000	0.4683	0.9943
210	target	e	0.9975	0.0000	0.0480
210	target	μ	0.0000	0.9976	0.0020
210	target	π	0.0500	0.0007	0.9972

We have investigated the efficiency of the system with a simple algorithm. We use a 685 simple 5 bin window $=6.25$ ns wide region for identifying the particle types - slightly wider 686 than 6σ. The centroid of the peak determined the central bin of the window, with two 687 bins added on each side. The simulation simply aligns the $20-\mathrm{ns}$ RF window to the start 688 of the flight of the particles from the production target, although in practice the phase of 689 the RF time is basically arbitrary, due to variations in cable lengths into the electronics. 690 Results are shown in Table IV. The "diagonal" elements should be roughly unity, while 691 the off-diagonal elements (e.g., the fraction of μ 's identified as e 's and the fraction of e 's 692 identified as μ 's) should be roughly symmetric - but not exactly since the peaks are not ${ }_{693}$ equally centered in the bins. The probabilities do not have to add to unity in each row,
${ }_{694}$ since a signal in some time bins leads to two different particle types being identified.

TABLE V. RF timing identification system estimated efficiencies. The misidentification of π 's as e 's at $115 \mathrm{MeV} / c$ needs to be corrected, as discussed in the text.

Momentum (MeV / c)	115	153	210
e efficiency (\%)	99.61	99.60	99.57
μ efficiency (\%)	99.13	99.47	99.56
π 's IDed as e^{\prime} 's (\%)	13.15	$\approx 10^{-4}$	≈ 0
π 's IDed as μ 's (\%)	≈ 0	≈ 0	0.03
e^{\prime} 's IDed as μ 's $(\%)$	≈ 0	≈ 0	≈ 0
μ 's IDed as e 's $(\%)$	$\approx 10^{-4}$	≈ 0	≈ 0

TABLE VI. RF timing identification system estimated efficiencies with 50 ps offset. The misidentification of π 's as e^{\prime} s at $115 \mathrm{MeV} / c$ needs to be corrected, as discussed in the text.

Momentum (MeV / c)	115	153	210
e efficiency (\%)	99.62	99.62	99.60
μ efficiency (\%)	99.16	99.44	99.53
π 's IDed as e 's (\%)	11.65	$\approx 10^{-4}$	≈ 0
π 's IDed as μ 's (\%)	≈ 0	≈ 0	0.03
e 's IDed as μ 's (\%)	≈ 0	≈ 0	≈ 0
μ 's IDed as e 's $(\%)$	≈ 0	≈ 0	≈ 0

706 of π 's as e 's, of order 10% from the overlap of Rf time misidentification probabilities, will ${ }_{707}$ become 0 in practice from the time of flight.

One concern is the stability of the beam RF time. There is some indication that the 709 beam RF time is very stable when the machine runs, but can shift by up to 100 ps when 710 the machine goes down and is brought back up. To study this issue we recalculated the ${ }_{711}$ efficiencies with the same algorithm but assuming the beam RF time is shifted 50 ps . 712 Table VI shows the results. The efficiencies of identifying e 's and μ 's is stable to better

As indicated before, it is important that the μ and e efficiencies are high to not lose 715 statistics, but the cross section is not affected by an inefficiency here. The misidentifi716 cations are more important. Misidentification of beam particles leads to incorrect scaler 717 counts and mis-normalization of cross sections. For μ 's, the worst background is at 210 ${ }_{718} \mathrm{MeV} / c$, where the π / μ ratio is ≈ 14. The μ count will then be off by about 0.4% due to 719 misidentified π 's if the correction is not determined and applied. A second possible issue 720 is whether the trigger rate has a large increase; it does not as as discussed in Section II A 721 in relation to Table Π for event rates and in relation to Table ΠI for accidental coincidence ${ }_{722}$ rates. A third possible issue is whether misidentified, e.g., elastic πp events that are read ${ }^{723}$ out could affect the cross section, but due to the superior time resolution of the scattered ${ }_{724}$ particle scintillators in the analysis, these events are rejected.

Thus, the beam RF time ID system provides a sufficient suppression of π events at the trigger level to keep their readout rate small and the normalization accurate, once it is ${ }^{727}$ calibrated - the calibration procedure is discussed further below in Section IV B.

- The Tel Aviv group achieved 0.96 ns with a scintillating fiber detector - we expect to reconfigure this detector into the scintillating fiber detector we need at the IFP and at the target. Therefore it is likely that the hardware time resolution will be better than we assume here.
- The target scintillating fiber system consists of three planes of scintillating fibers, so we should find the same RF time offset at all three beam momenta - the e peak position is 767 independent of beam momentum. Figure 19 shows a simulation of the resulting RF time 768 spectra in a South Carolina scintillator placed slightly downstream of the target position 69 for all three beam momenta.

FIG. 19. Simulation of RF time distributions at the target for all proposed beam momenta, determined by a South Carolina scintillator. The absolute number of counts is arbitrary, but the relative number of counts for each particle type is based on estimates for positive polarity particles in the proposal. The squared-off peak shape results from the time of flight variation from the 3% momentum acceptance of the $\pi \mathrm{M} 1$ channel being much greater than the timing resolution of the scintillators. The difference in widths is due to the same momentum bite corresponding to different ranges in β for the different particles, and thus to different ranges in time of flight.

770 Determining the RF phase requires only relatively low statistics data, about 100,000 771 events so that even 1% components of the beam are reasonably well determined. Thus the 772 time needed for this measurement depends mainly on the overhead of setting it up. Once 773 the data analysis procedures are set up, the analysis time should be less than one hour. 774 Once the RF timing phase is determined for the detectors at the target, the scintillating 775 fiber array at the IFP can be put back in place, and its peaks easily identified as well in 776 the event data.

777 The FPGA gates can now be programmed for each beam momentum. It is important at 778 each channel setting to measure the efficiency for identifying particles as well as the fraction 779 of other particles misidentified as e 's or μ 's. This can be done by the same measurement, 780 taking event data on the beam PID system with the added South Carolina scintillator to

781 much higher statistics, except that one important issue that we have omitted so far must 782 be addressed first.

It is equally important to determine the rate, effect of, and corrections for accidental 784 coincidences of multiple beam particles. Under normal running conditions, the beam flux 785 will be $\approx 10 \mathrm{MHz}$, so there is about a 20% chance of more than one particle in a given 786 RF bucket. (The Poisson distribution for an expectation of 0.2 background particles is $78781.9 \% 0,16.4 \% 1,1.6 \% 2$, and $0.1 \% 3$ background particles.) If additional particles pass 788 through different scintillating fibers, we obtain signals from multiple fibers in a plane, but 789 the scalers can only count one particle of each type per beam RF bucket. (Note also that 790 there is a small chance to have one particle with a trajectory at a sufficient angle, $>40 \mathrm{mr}$, 791 that passes through multiple fibers in a plane.) But if two particles pass through the same 792 scintillating fiber in either detector, because of the width of electronic pulses the FPGA 793 will only see the first pulse. The second particle signal will not be available for triggering 794 logic or counting in the scalers. Given the size of the beam, the probability for this is $795 \approx 3 \%$ for the target SciFi array, but only $\approx 0.2 \%$ for the IFP SciFi array. Corrections for 796 these effects can in principle be modeled if the time resolution of the system is well enough 797 understood, but we plan as well to directly measure them.

809 Finally, the stability of the beam RF must also be considered. As indicated earlier, 810 there is some indication that the beam RF time is very stable when the machine runs, 811 but can shift by up to 100 ps when the machine goes down and is brought back up.

Because of the high precision of the South Carolina scintillators, it is in principle possible ${ }_{813}$ to determine this indirectly by simply monitoring the RF time of scattered particles. But 814 because of the variety of scattering and background events that occur, the most direct test 815 is to continuously have a beam scintillator downstream of the target that is read out on all 816 triggers. Thus we plan to put a scintillator enough beyond the target position that it can ${ }_{817}$ be left in and read out on event data. Accidental coincidences and short dedicated runs 818 will allow the beam RF times to be monitored. If there are rate issues, we will replace one 819 of the standard scintillators with a smaller one that samples a fraction of the beam. If 820 the beam RF time is found to wander during the course of the run, it might be a simpler ${ }_{821}$ adjustment to have several interchangeable cables with lengths several mm different so 822 that the RF time phase shift can be compensated for, rather than redoing the entire series 823 of calibrations.

C. Summary

In summary, the beam PID and counting system consists of target and IFP scintillating 826 fiber arrays, used with a custom FPGA system to identify particle types in hardware. ${ }_{827}$ This information is sent to scalers to provide beam normalization and to trigger logic so ${ }_{828}$ that we can efficiently trigger e - and μ-induced events, while suppressing π-induced events. ${ }_{829}$ Commissioning the system and calibrating its efficiencies is straightforward, using a South ${ }_{830}$ Carolina scintillator after the target Sci-Fi array. These activities will require 1 week of 831 beam time, as we expect to do the calibrations twice at each energy.

V. BEAM MOMENTUM DETERMINATION

Since the elastic scattering cross sections depend on the beam energy, it is important to 834 know the energy to extract the elastic form factor. Figure 20 shows the results of our study 835 of the sensitivity of the measured cross sections to offsets in the beam energy. Roughly ${ }_{836}$ speaking, the relative change in the cross section is $1-2$ times the relative change in the ${ }_{837}$ beam momentum, and the variation of the correction with angle is several times smaller ${ }_{838}$ than the average correction. The change in the form factor, and thus in the extraction of
the radius, is about half the change in the cross section. This suggests that knowledge of 340 the beam momentum at about the 0.1% level is desirable.
${ }_{841}$ Since the $\pi \mathrm{M} 1$ channel has a 3% momentum bite, we also studied the sensitivity of the ${ }_{843}$ the result for averaging over a $\pm 1.5 \%$ momentum bin, assuming a simple but unrealistic 844 uniform distribution in incident momentum. For fixed scattering angles, we evaluated the 845 average cross section for the full momentum bin and compared the result to the cross 846 section for a mono-energetic beam at the central momentum. The effects of averaging are 847 down about an order of magnitude from the effects of offsets, and are almost negligible.

Thus, in an idealized experiment the beam momentum sensitivity is small. We now 849 consider some complicating factors.

In principle the momentum of beam particles can be determined by measuring the x 851 position of beam particles at the channel intermediate focus position, DR8 - the channel 852 resolution is known to be 0.1%. Since the optics are identical for π 's and e 's, which come ${ }_{853}$ from the same region of the $\pi \mathrm{M} 1$ production target, the channel momentum resolution 854 should suffice for e 's and π 's. To our knowledge, the validity of using the position at DR8 855 for determining the momentum of μ 's has not been established. It certainly does not hold

FIG. 20. Left: Change in cross section in percent for a 0.1% change in the beam momentum. Right: Change in cross section in percent when averaging over a $\pm 1.5 \%$ bin in the beam momentum. The relative change in the form factor is half of the relative change in the cross section. Both studies used the Kelly form factor parameterization. 858 their DR8 x position provides $\mathrm{a} \approx 0.1 \%$ determination of their momentum. In Section III 859 we argued on the basis of beam line simulations that it appears that the momentum 860 resolution of μ 's at the IFP from the production target is close to 0.1%. To ensure this 861 is about right, we need to perform an independent measurement of the beam momentum, 862 to study the accuracy of the DR8 x position being used to give the μ momentum and to 363 confirm the determination of the e and π momenta.

The basis of our plan to calibrate the beam momentum is to use a high-precision "South 865 Carolina" scintillator near the target position to determine the beam momentum through 866 time of flight (TOF) techniques - this is exactly the same set up discussed in Section IV

If the TOF of a particle can be determined with uncertainty ΔT, then the momentum ${ }_{869}$ is determined to $\Delta p / p=\left(1+\beta^{2} \gamma^{2}\right) \Delta T / T$. For the $\pi \mathrm{M} 1$ channel, we do not know the 870 actual TOF, but we do measure the TOF of e 's, μ 's, and π 's simultaneously. The e 's have ${ }_{871} \beta=1$ to a good approximation for all our momenta, thus determining in essence the start 872 time for the μ 's and π 's, at a cost of a factor of $\sqrt{2}$ worse resolution. We neglect here 873 uncertainties from the z positions of the scintillators, which should be of order $1 \mathrm{~mm} / 10$ $874 \mathrm{~m}=0.01 \%$.

The resulting momentum determinations are shown in Table VII. The numbers calcu876 lated used a distance of 24.5 m from the $\pi \mathrm{M} 1$ production target to the scattering target, 877 and assumed a 1σ resolution of 50 ps for the scintillator. It is important to understand

TABLE VII. Estimated momentum resolution - not the determination of the centroid - from μ and π RF time measurements. The result includes the resolution of the e peak.

| Momentum
 (MeV / c) | σ_{p} / p_{μ}
 $(\%)$ | σ_{p} / p_{π}
 $(\%)$ |
| :---: | :---: | :---: | :---: |
| 115 | 0.20 | 0.13 |
| 153 | 0.31 | 0.20 |
| 210 | 0.54 | 0.33 |

879
880 that this is the 1σ resolution for the beam momentum, the width of a presumably nearly

TABLE VIII. Variation in timing from channel momentum acceptance.

Momentum (MeV / c)	$\Delta T / \Delta p_{\mu}$ $(\mathrm{ps} / \%)$	$\Delta T / \Delta p_{\pi}$ $(\mathrm{ps} / \%)$
115	510	765
153	320	500
210	185	300

FIG. 21. Simulated timing spectra for a $50-\mathrm{ps}$ resolution scintillator at $\mathrm{z}=24.5 \mathrm{~m}$ with a 3 -slit sieve at DR8. Slits are set at $\delta p=0 \%, \pm 1.3 \%$ with widths of 0.1%. Only the μ portion of the spectrum is shown, since the π 's have better peak separation while the e 's have no peak separation.

905 provide separated timing peaks. Figure 21 shows the resulting RF time spectra for the 906 three proposed beam energies. It is apparent that the peaks are sufficiently well resolved.

TABLE IX. Variation in timing at the target scintillator from energy loss in detectors at the IFP, and variation in beam momentum for a fixed 50 -ps change in time at the target scintillator.

Momentum (MeV / c)	$\Delta T / \Delta E_{\mu}$ $(\mathrm{ps} / \mathrm{MeV})$	$\Delta T / \Delta E_{\pi}$ $(\mathrm{ps} / \mathrm{MeV})$	$\Delta p_{\mu}(50 \mathrm{ps})$ $(\%)$	$\Delta p_{\pi}(50 \mathrm{ps})$ $(\%)$
115	300	530	-0.20	-0.13
153	130	220	-0.31	-0.20
210	50	90	-0.54	-0.33

907
The preceding discussion ignores the important issue that the energy of importance is 908 the e or μ energy when the particle elastically scatters from a hydrogen nucleus in the 909 target. Due to energy loss in the beam detectors and in the target before the scattering, 910 this is not the same as the energy measured by the DR8 x position. The energy loss in the 911 scintillating fiber detector at DR8 is $\approx 1 \mathrm{MeV}$. Table IX shows how the timing of μ 's and π 's 912 changes due to energy loss in the scintillating fiber array, and also what momentum change ${ }_{913}$ corresponds to a change in TOF of 50 ps , the resolution of the system. It can be seen that 914 the $\approx 1 \mathrm{MeV}$ energy loss leads to a measurable effect in the timing of particles, and that 915 the measured timing can determine the beam momentum change with a resolution of a ${ }_{916}$ few tenths of a percent. The energy loss $d E / d x$ can be calculated with an accuracy of 4%,

917 918 distribution of particle energy losses can be modeled with the well-known Landau-Vavilov 919 distribution. As a result, measurements of beam energy loss in the IFP array should serve 920 to confirm the accuracy of our models of the experiment.
${ }_{921}$ The additional energy loss from the beam line detectors near the target and the target 922 itself can also be calculated or even measured directly by inserting these materials into ${ }_{923}$ the IFP region. Finally, we note that the maximum energy loss possible is constrained 924 in hardware by the coincidence trigger and in analysis by the measured RF time of the 925 South Carolina scattered particle scintillators. Since the flight from the target and beam 926 line detectors near the target to these scintillators is about a factor of 10 shorter than 927 the flight path between DR8 and the scintillators, the measurement is correspondingly an 928 order of magnitude less precise.

VI. BEAM SCINTILLATING FIBER DETECTORS

In this section we discuss the scintillating fiber detectors that we plan to use to measure ${ }_{931}$ beam particle momentum, RF timing, and as a result particle type.

A. Intermediate Focal Point Detector

In order to determine the beam momentum a scintillating fiber array will be installed 934 at the intermediate focal point (IFP). The nominal dispersion at the IFP is $21 \mathrm{~cm} / 3 \%$ ${ }_{935}=7 \mathrm{~cm} / \%$, and the channel momentum resolution is 0.1%. Simulations show that the ${ }_{936}$ dispersed π beam at the IFP is 22.5 cm wide (full width at 10% maximum) with sharp ${ }_{937}$ edges. The vertical beam distribution is roughly Gaussian with width $\sigma=0.60 \mathrm{~cm}$, and no ${ }_{938}$ visible tails outside $\pm 2.25 \mathrm{~cm}$. The μ beam appears to be $2-3 \mathrm{~cm}$ wider in the dispersed 939 direction, according to the simulations in Section [III, but significantly wider in the vertical 940 direction, about $\pm 15 \mathrm{~cm}$. As discussed there, we believe much of the additional acceptance ${ }_{941}$ is from μ 's that do not make it to the scattering target, and an important aspect of our ${ }_{942}$ test measurements will be to determine the needed active area at the IFP.
${ }_{943}$ The required momentum resolution of 0.1% translates into a required position resolution

944 of 7 mm , easily achievable with $2 \mathrm{~mm} \times 2 \mathrm{~mm}$ scintillating fibers. The timing resolution ${ }_{945}$ required is at least 1 ns . We plan to use 2 planes of $1282 \mathrm{~mm} \times 2 \mathrm{~mm}$ fibers, offset 946 by 1 mm . This geometry will leave about 1.5 cm of scintillator to each side which will ${ }_{947}$ measure background rates. Light readout will be performed by coupling the scintillating 948 fibers directly to multi-anode PMTs of 64 channels each on both sides of the fiber.

949 An issue for positive polarity beam is that the channel has a large flux of low energy ${ }_{950}$ protons. The proton kinetic energies at our 3 momentum settings of $115 \mathrm{MeV} / c, 153$ ${ }_{951} \mathrm{MeV} / c$, and $210 \mathrm{MeV} / c$ are $7.0 \mathrm{MeV}, 12.4 \mathrm{MeV}$, and 23.2 MeV . We plan to stop these ${ }_{952}$ protons with a thin sheet of plastic. For polycarbonate, for example, the needed thicknesses ${ }_{953}$ are $0.6 \mathrm{~mm}, 1.6 \mathrm{~mm}$, and 4.8 mm . The thickness will be adjusted to be appropriate for ${ }_{954}$ each beam momentum setting, to minimize multiple scattering and energy loss of the 955 muons and electrons.

1. Scintillating Fibers

The existing Tel Aviv detector uses BCF-10 scintillating fibers manufactured by Saint ${ }_{958}$ Gobain Crystals. The core density is $1.05 \mathrm{~g} / \mathrm{cm}^{3}$. The refractive index of the scintillator 959 core is $n=1.68$. The core is surrounded by an optical cladding of polymethylmethacrylate 960 (PMMA), with a thickness of 4% of the total fiber size, and a lower refractive index n $961=$ 1.49. An extra mural absorber (EMA), white coating (10 to $15 \mu \mathrm{~m}$ thick), is applied 962 primarily to eliminate crosstalk among closely packed fibers. The trapping efficiency is 4% 963 and is independent of the scintillator event's location in the fiber. The typical light yield 964 of these scintillators is ≈ 8000 photons $/ \mathrm{MeV}$. The attenuation length of the scintillator 965 material is 2.2 m (for 1 mm diameter, measured with a bialkali cathode PMT). The 966 emission spectra of the fibers are shown in Figure 22.

2. Multianode PMTs

We plan to use the H7546B-200 multianode PMT manufactured by Hamamatsu Inc. ${ }_{969}$ The PMT is a 64 channel $(8 \times 8$ channel $)$ photomultiplier with individual readout for 970 each channel. The fibers will be directly coupled to the PMT using Bicron optical grease

FIG. 22. Emission spectra of the BCF-10 fibers.
${ }_{971}$ BC-630. The PMT spectral response is shown in Figure 23.

FIG. 23. Typical spectral response for the H7546B multianode PMT.

3. Light Collection Budget

973
Typical light yield for the scintillating fibers is ≈ 8000 photons $/ \mathrm{MeV}$. For a minimum 974 ionizing particle we expect 8000 photons $/ \mathrm{MeV} \times 2 \mathrm{MeV} / \mathrm{cm} \times 2 \mathrm{~mm} \approx 3200$ photons. ${ }_{975}$ For a collection efficiency of 4% (2% each side) and a quantum efficiency of 20% we expect
$976 \approx 13$ photons per event per PMT.
4. SciFi Array Prototype

978 The test setup consisted of a multianode PMT, 2 additional single PMTs, 9 scintillating ${ }_{979}$ fibers $2 \times 2 \times 750 \mathrm{~mm}^{3}$, and an additional scintillator counter $2.52 \times 252 \times 40 \mathrm{~mm}^{3}$, as 980 shown in Figure 24.

FIG. 24. A schematic of the test setup for the prototype array.

The time resolution of the multianode PMT was measured using a combination of two different anodes from the multianode PMT:

$$
T=T_{R i}-T_{R j},
$$

with the resolution defined as:

$$
\sigma_{M e a s}=\sqrt{2} \sigma_{R},
$$

981 where we assumed that all anodes of the multi anode PMT have equal timing resolution. 982 The timing resolution was tested in three locations along the fiber. A representative timing 983 histogram is shown in Figure 25. Each channel of the TDC corresponds to 40 ps, giving a 984 timing resolution of $33.82 \mathrm{ch} \times 40 \mathrm{ps} / \mathrm{ch} / \sqrt{2}=0.96 \mathrm{~ns}$. At the analysis level, this leads 985 to 0.68 ns resolution for each plane, and 0.48 ns from four signals on two planes.

986 To estimate the crosstalk we used a configuration in which the bar scintillator was placed ${ }_{987}$ parallel to the fibers. As described above all anodes of multianode PMT share the same

FIG. 25. A representative timing histogram for the multianode PMT.
${ }_{988}$ photo-cathode. Due to this configuration there are possible false signals in one (or more) 989 anodes that originate from (one or more) different anodes of the multianode PMT. The 990 manufacturer of the multianode PMT states that the crosstalk is about 2%. A comparison ${ }_{991}$ of ADC spectra for real and crosstalk signals is shown in Figure 26. The signal is above 992 channel 200. About 4% of the time a crosstalk signal is in this region; about half of the 993 crosstalk events are from dark noise - the exponential of the pedestal peak - and about 994 half of the crosstalk events are actual crosstalk. Thus the crosstalk signal is clearly well 995 separated from the real signal. In addition, in order to further reduce crosstalk effects the 996 ordering of the anodes on both sides of the fibers will be such that adjacent anodes will 997 be different on each side of the fiber, significantly reducing the coincidence probability of 998 crosstalk events. In the trigger electronics we will require coincidences of the phototubes 999 at both ends of the fiber, which reduces the efficiency by less than 0.01%.

B. Target Scintillating Fiber Array

1001 In order to identify the beam particles impinging on the target we plan to install a 1002 scintillating fiber array just upstream of the target, $\approx 23 \mathrm{~m}$ in flight path from the pro${ }_{1003}$ duction target. The detector will consist of 3 planes of $2 \mathrm{~mm} \times 2 \mathrm{~mm}$ scintillating fibers, 1004 arranged in an XYU configuration. The active area of the detector will be about $5 \mathrm{~cm} \times$ 10055 cm , leading to 25 fibers in the XY planes and 35 in the U plane. The intent is that this 1006 detector should be larger than the beam spot, and cover the aperture in the shielding. 1007 The additional 2 cm (1 cm on each side of the active area) will be used to measure the

FIG. 26. A comparison of the ADC spectra for real (black) and crosstalk (red) events. The red crosstalk spectrum largely consists of pedestal events.

1008 beam halo. Thus a large majority of decay particles that might make it to the detectors 1009 will still give good RF times in this counter, so that they can be identified by timing, and 1010 will give position information as well, which can also be used to reject them at the analysis 1011 level, and possibly at the trigger level, if needed. The fibers and PMTs used will be the 1012 same as those for the IFP detector. We will use 2 PMTs for each fiber (1 on each end) 1013 with the fibers coupled directly to the multi anode PMTs.

1015 The 3 single plane SciFi detectors to be used for the beam test - see Figure 27- are 1016 modifications of the forward tracker of the SANE experiment at JLab. The scintillating 1017 fibers are Bicron BC-408, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ square. Each fiber is glued to two 1.2 mm 1018 diameter wavelength shifting fibers (Bicron BCF-92MC) - see Figure 28. The WLS fibers 1019 are glued on the scintillator surface for light collection and to a multi anode PMT through 1020 a Delrin plastic block - see Figure 29. Each fiber goes into a single pixel in the PMT. 1021 The PMTs are Hamamatsu H75546B. The board on the PMT sums the signals from two 1022 pixels corresponding to the same scintillating fiber and the output goes into one cable.

FIG. 27. 3 SciFi planes to be installed for the test beam, one plane in the IFP and two near the target.

FIG. 28. Scintillating fibers and WLS fiber arrangement.

1024

1025

1026 For the beam test we plan to use one counter at the IFP and two detectors at the 1027 planned target position area. The detectors at the target area can be arranged so that 1028 they are parallel and at a distance to measure angular divergence in each direction, or 1029 perpendicular to each other to produce a 2 D beam profile of the beam.

1030

VII. BEAM GEM DETECTORS

1031 Measuring high-precision cross sections requires a precise knowledge of the kinematics 1032 of the scattering events. However, due to the large emittance of the secondary $\pi \mathrm{M} 1$ beam,

FIG. 29. Fiber coupling to the PMTs.

1033 with a beam spot size of $\approx 4 \mathrm{~cm}(x) \times 2.0 \mathrm{~cm}(y)$ and an angle divergence of about ± 20 ${ }_{1034} \mathrm{mr}\left(x^{\prime}\right.$ and $\left.y^{\prime}\right)$ - see Section III - it is necessary to measure the incoming trajectories on 1035 an event by event basis to reconstruct the kinematics.

1036 Precise event-by-event tracking of beam particles with a spatial resolution of better than ${ }_{1037} 100 \mu \mathrm{~m}$ and typical flux of 10^{7} beam particles per second has been a serious technological 1038 challenge that has only been overcome in recent years. In the past, secondary-beam 1039 experiments with beam tracking typically had to rely on scintillator hodoscopes (also to 1040 be used in this experiment), which are limited to spatial resolutions determined by the 1041 thickness of scintillating fibers, typically to a few mm. Detectors providing higher spatial 1042 resolution such as wire chambers could by far not be operated at fluxes that high. In 1043 principle, the tracking resolution can be improved to arbitrary levels by using silicon strip 1044 detectors, which can be highly segmented down to the $\mu \mathrm{m}$ scale, however they are quite 1045 costly and are usually not as radiation-hard as one would like.

1046 The most effective solution for tracking a 10 MHz beam with $<100 \mu \mathrm{~m}$ resolution is
the use of GEM detectors (Gas Electron Multiplier). GEMs have been demonstrated to 1048 withstand harsh radiation environments while maintaining high resolution and efficiency 1049 for single events. Besides, they show little to no aging effects. GEMs have been successfully 1050 operated at intense high-energy muon beams at the COMPASS experiment at CERN, 1051 which has served as a role model for the development of GEMs in many other experiments 1052 and applications. They are low-mass detectors of order 0.5% of a radiation length, thus 1053 keeping multiple scattering at a minimum. Resolutions of $50-100 \mu \mathrm{~m}$ are typically achieved 1054 with a two-dimensional strip readout at some $400 \mu \mathrm{~m}$ pitch. This way the amplified charge 1055 is distributed over several readout strips as a few mm wide cluster, which allows for an 1056 improved resolution smaller than the pitch by using a centroid weighting technique. The 1057 two-dimensional hit information from several GEM detectors is combined to determine 1058 the beam trajectory. The reduced number of electronics channels and a rather simple 1059 construction scheme makes GEM detectors very cost-effective.

1060 The Hampton group has developed, built, and is currently successfully operating a set 1061 of $10 \times 10 \mathrm{~cm}^{2}$ GEM detectors at the OLYMPUS experiment at DESY. These detectors 1062 will become available for the proposed experiment at PSI in the course of 2013, after ${ }_{1063}$ OLYMPUS data taking has been completed. The OLYMPUS experiment aims to pre1064 cisely measure the effect of two-photon exchange in elastic lepton-proton scattering at

FIG. 30. Design and reality of the OLYMPUS experiment with components labeled in the figure. The schematics shows the forward-angle luminosity telescopes at 12 degrees. The photo was taken shortly before the installation into the DORIS ring in July 2011.

1065 intermediate to high momentum transfer $\mathrm{Q}^{2}=0.6-2.2(\mathrm{GeV} / \mathrm{c})^{2}$, by comparing the elastic ${ }_{1066}$ electron and positron scattering cross sections. The layout of OLYMPUS is shown in Fig1067 ure 30, along with a photo taken shortly before the rolling-in of the OLYMPUS detector 1068 into the DORIS storage ring in July 2011. At OLYMPUS, these GEM detectors are used 1069 for monitoring of the luminosity by determining the forward-angle elastic scattering rate 1070 on an event-by-event basis, where the two-photon exchange effect and difference between $1071 e^{+}$and e^{-}are expected to be negligible.

1072 Three GEM elements have been arranged as a tracking telescope with approximately 40 1073 cm gaps in between GEMs. One such telescope is situated at 12 degrees both in the left 1074 and right sector of OLYMPUS. The GEM elements are identified as US (upstream), MI 1075 (middle), and DS (downstream), left and right sector. Additional tracking elements built 1076 as multi-wire proportional chambers (MWPC) are located interleaved with the GEM ele1077 ments. The tracking array is sandwiched between upstream and downstream scintillators 1078 read out by silicon photomultipliers which provide the trigger signal for the GEM readout. 1079 Both the GEM and MWPC telescope can be operated independently.

Figure 31 (upper half) is a picture of the nine GEM detectors produced for OLYMPUS. 1081 The lower half shows one of the GEM/MWPC tracking telescopes installed in OLYMPUS.

1084 The OLYMPUS GEMs are $10 \times 10 \mathrm{~cm}^{2}$ in size and are read out with strips in two 1085 dimensions with a pitch of $400 \mu \mathrm{~m}$. The design of the GEM stack parameters such as 1086 the drift gap and gaps between the three GEM layers and the readout plane follow that 1087 of the COMPASS design, which has been demonstrated to provide reliable detection of ${ }_{1088}$ hit locations at routine rate densities of $2.5 \mathrm{MHz} / \mathrm{cm}^{2}$ and of up to $25-100 \mathrm{MHz} / \mathrm{cm}^{2}$ in 1089 dedicated tests. The expected rate density for a nominal beam spot at PSI of $1.0 \times 1.5 \mathrm{~cm}^{2}$ 1090 is approximately $7 \mathrm{MHz} / \mathrm{cm}^{2}$, with a single-track probability of over 80%. The OLYMPUS 1091 GEMs are therefore very suitable to provide event-by-event beam particle tracking under 1092 these conditions.

1093 The GEMs are read out using FPGA-controlled frontend electronics based on the APV109425 chip developed for CMS. The readout hardware has been developed by INFN Rome 1095 and Genova for the Hall A SBS spectrometer in the framework of the 12 GeV upgrade of 1096 Jefferson Lab, and has been used for the first time in a realistic setting at OLYMPUS. It

1097 consists of a frontend card hosting the APV chip, which is directly attached to the GEM 1098 detector, and a VME based controller board hosting an FPGA located in the counting 1099 house at some 25 m distance. The APV processes 128 readout channels and pipelines 1100 both analog and digital information of 128 channels on a single cable. Raw signals on 1101 all strips are sampled with either 20 or 40 MHz frequency. After adjusting the latency, 1102 "snapshots" of the analog signal are taken and sent as frames to the VME based controller. ${ }_{103}$ The controller provides power, clock, and trigger to the APV, and receives and digitizes 1105 the raw data into on-board ADCs. The DAQ software is running on a CPU that controls 1106 the VME bus to write the data to disk or to send it to the event builder. As each APV 1107 chip reads out 128 channels, a $10 \times 10 \mathrm{~cm}^{2}$ chamber corresponds to 2×250 channels, which 1108 are read out with four frontend chips. One VME controller can operate up to 16 APVs, 1109 i.e. one such controller can operate up to four GEMs (two telescopes of three GEMs are

FIG. 31. Top: The final nine GEM elements produced for OLYMPUS. Bottom: Photo of the mounted tracking telescope for luminosity monitoring at OLYMPUS with the US, MI, and DS element labeled.

1110 in use, each read out with one separate controller). The strip numbers and digitized pulse 1111 heights of the hit clusters in x and y give the spatial information for the track. Figure 32 1112 shows the digitized pulse height after pedestal subtraction of a single event versus the 1113 strip number, of the US, MI, and DS GEM in both x and y direction (250 channels each). 1114 The red triangles indicate the candidate cluster locations returned by the cluster finding 1115 algorithm.

FIG. 32. ADC channel versus strip number in x and y direction for the US, MI, and DS GEM elements. The red triangles mark the location where the cluster finding algorithm yields a candidate cluster location.

FIG. 33. Histogram of cluster amplitudes of the DS GEM element in the right sector of OLYMPUS. The data are well fit with a Landau distribution.

1116 The cluster amplitudes observed with a GEM detector follow a Landau distribution, 1117 displayed in Figure 33 for the right sector DS element. To generate this plot, pedestals 1118 were subtracted from the raw ADC data. The ADC values for 250 strips were processed 1119 through a Gaussian filter to reduce single-channel noise. For the identification of a charge ${ }_{120}$ cluster, multiple adjacent strips are expected to give a higher reading than the pedestal. ${ }_{1121}$ The algorithm is looking for local maxima as a function of strip number. The cluster 1122 amplitude is obtained by integrating the readings of the active strips belonging to a local 1123 maximum. As is expected for low-mass detectors, the amount of amplified charge from 1124 the ionization process follows a Landau distribution.

1125 One important property of GEM detectors is the sharing of the collected charge of a 1126 cluster between the x and y strips. Figure 34 shows how the charge cluster amplitudes ${ }_{1127}$ are correlated between the x and y strips of the three GEMs. If charges are read in equal 1128 portions in both directions, one expects a good correlation at equal magnitudes for any ${ }_{1129}$ given charge cluster. This has been established very well as seen in the two-dimensional ${ }_{1130}$ figures for the US, MI, and DS element shown for a common data sample.
${ }_{1131}$ In order to achieve a readout rate of order 1 kHz , sparsification of the GEM readout ${ }_{1132}$ will be implemented. In principle, the GEM readout can be sparsified (or zero-suppressed

FIG. 34. Sharing of cluster charge between strips in x and y orientation.

1133 after pedestal subtraction), either at the hardware level or at the DAQ stage. Algorithms ${ }_{1134}$ for sparsification in the presence of common mode noise have been partially developed ${ }_{1135}$ but not yet fully implemented. In the OLYMPUS experiment, the readout rate in the ${ }_{136}$ telescopes has been of order 100 Hz , for which sparsification has not been required.
${ }_{1137}$ The OLYMPUS GEM telescopes have been working very well. The operation has been ${ }_{1138}$ very stable, noise levels are very low. Intrinsic resolutions have been found to be around ${ }_{1139} 70 \mu \mathrm{~m}$, and the efficiencies appear to be very close to 100%, as shown in Figures 35 and 114036.
${ }_{1141}$ As mentioned above, this system will be available for the proposed experiment at PSI 1142 after completion of OLYMPUS in 2013, including expertise and manpower. The same ${ }_{1143}$ postdoc - Dr. Jürgen Diefenbach - who has built and successfully brought the GEM 1144 system into operation will be available to transfer the system from DESY and to re1145 commission it at PSI.

1146 For the planned beamtest in fall 2012, two GEM detectors will be provided by the ${ }_{1147}$ UVa group to study beam properties such as composition of pions, muons, and electrons, 1148 beam flux, as well as beam size and divergence. The UVa GEMS are similar in size and

FIG. 35. Track residuals for OLYMPUS forward-angle trajectories in the 12-degree GEM telescope fitted with straight lines. The residual width is composed of the intrinsic resolution and the track uncertainty. The residual centroids are off zero and of opposite sign of the middle GEM element due to the curvature of the track. Intrinsic resolutions of $73 \mu \mathrm{~m}, 75 \mu \mathrm{~m}$, and $70 \mu \mathrm{~m}$ have been achieved for the US, MI, and DS element, respectively.

1149 performance to the Hampton GEMs that will be used for the actual measurement.

FIG. 36. Efficiencies of the US, MI, and DS GEM elements as a function of x and y. Tracks were identified and fitted with 3 MWPC +2 GEM elements, in order to verify if the respective third GEM element shows a hit at the expected location. Efficiencies are generally very close to 100% and are exceeding 98% even in regions of local inefficiencies.
VIII. TARGET

1151 Measuring elastic μp and $e p$ cross sections requires scattering from a hydrogen target. ${ }_{1152}$ We choose to use a liquid hydrogen target, rather than a solid CH_{2} foil, for example, to 1153 reduce the amount of other nuclei in the beam, and thus to reduce unavoidable subtractions 1154 of backgrounds of nuclear elastic scattering that would increase our uncertainties. Rutgers 1155 University has assumed responsibility for the target.

1156 Liquid hydrogen targets in vacuum systems are a mature technology, with existing 1157 targets capable of handling kW level power depositions. For the experiment proposed ${ }_{1158}$ here, the anticipated power deposition in the target is $P \approx 7 \mathrm{MeV} \cdot \mathrm{cm}^{2} / \mathrm{g} \times 0.3 \mathrm{~g} / \mathrm{cm}^{2} \times$ $115910^{7} \mathrm{e} / \mathrm{s} \times 1.6 \times 10^{-19} \mathrm{C} / \mathrm{e}=3 \times 10^{-6} \mathrm{~W}=3 \mu \mathrm{~W}$ 。

A recent example of a low-power, standalone, cryotarget system is the Fermilab E906 1161 [44] target, developed by the Michigan and Maryland groups. This system provides a 1162 model for a modern low-power - beam power deposited in the target is about $3 \mathrm{~W}-$ 1163 standalone target produced with up to date safety standards. As such, we expect the 1164 cryotarget system for this experiment to be generally similar to the E906 system. However, 1165 in this section we will largely not consider issues of cryogenic target safety, instrumentation, 1166 etc. We expect a safety review of the target will be required by the laboratory subsequently. ${ }_{1167}$ We will instead focus of issues of the cryocell design and vacuum system windows, since 1168 the interaction of the beam with these elements directly determines the statistics of the 1169 measurement, backgrounds, and resolutions, and on target systematics.

1170 The main issue with a simple copy of the E906 system for use in this experiment 1171 is that the target was built with the needs of an experiment where an incident $120-\mathrm{GeV}$ 1172 proton beam interacts with a long target to produce several GeV muons that subsequently 1173 go through meters of concrete and detectors. The system uses vacuum windows and a 1174 cryotarget cell that would lead to too much multiple scattering and thus are too thick for 1175 this experiment.
${ }_{1176}$ An example of a system with much thinner walls is the Fermilab E907 target [45], 1177 shown in Figure 37. In this target the liquid hydrogen was contained in a $125-\mu \mathrm{m}$ thick 1178 mylar/kapton flask. The vacuum system in the region of the target used an almost spher${ }_{1179}$ ical shell 15.2 cm inner diameter and 5 mm thick, made of Rohacell (a low density foam) 1180 + fiberglass + epoxy. The target cell is made by gluing a sheet of mylar into a tube, 1181 and forming $\approx 2-\mathrm{cm}$ long end caps that are then glued over the ends of the tube. Hydro1182 gen liquid enters through the bottom and exits through the top of a support clamp that 1183 surrounds the tube, near the upstream end.

1184 Figure 37 also shows an example of a kapton target cell used by the Mainz MAMI A2 1185 collaboration for real photon experiments. Beam enters from the right. Hydrogen fills 1186 the region between the outer kapton cell and an inner aluminum tube which supports a 1187 kapton entrance window. The cell is formed by gluing a kapton sheet into a cylinder, and 1188 gluing on a short $\approx 5-\mathrm{mm}$ long end cap. There is a small lip on the end cap to provide a 1189 larger gluing surface. Hydrogen enters and exits the cell through the metal base at the 1190 right edge of the photo.

FIG. 37. (Left) Drawing of the Fermilab E907 cryotarget. Beam enters from the right. (Right) Picture of a kapton target cell used in Mainz MAMI A2 photon experiments. The entrance window and the tube on which it is mounted can be seen inside the kapton cell.

FIG. 38. Drawing (top view) through part of the Jefferson Lab Hall A cryotarget, showing the cell, flow diverter, and entrance tube and window to the left, and the cell block to the right.

1191 The standard Jefferson Lab high power cryotargets use Aluminum cells, typically with 11920.1 mm thick walls, in a variety of geometries. The "beer can" geometry, shown in Fig1193 ure 38, is very similar to the Mainz kapton cell shown in Figure 37, with the liquid hydrogen 1194 pumped into one side of the cell, vertical flow diverters installed at the top and bottom 1195 of the cell cause the hydrogen flow to be largely transverse where the beam goes through 1196 the hydrogen, and the hydrogen flowing out the other side of the cell. The "tuna can", 1197 and "race track" configurations use a vertical flow configuration, with hydrogen entering 1198 the top of a thin walled cell and exiting the bottom.

1199 For a low-power experiment such as this one, the slightly thicker $125-\mu \mathrm{m}$ kapton flask 1200 - kapton is preferred over mylar for hydrogen targets - is superior to the thinner 100 ${ }_{1201} \mu \mathrm{~m}$ Aluminum in providing reduced multiple scattering ($\approx 0.044 \%$ of $L_{r a d}$ for kapton vs. ${ }_{1202} \approx 0.11 \%$ of $L_{\text {rad }}$ for Al for entrance or exit window), reduced energy loss (0.032 MeV for 1203 kapton vs. 0.044 MeV for Aluminum for entrance or exit window), and a reduced rate of 1204 nuclear scattering backgrounds.

FIG. 39. Cartoon of the planned design for the target cell of this experiment. (Left) End view. (Right) Side view. The beam goes through an annular support ring into the target cell. The cell is supported between two arms coming out from the support ring. Liquid hydrogen fill and vapor exhaust tubes attach to the kapton cell through the support arms. The cell is also wrapped in aluminized mylar (not shown).

With the scattered particle detectors to the sides of the beam, constraints from a low${ }_{1206}$ energy beam and multiple scattering, and a desired scattering angle range of $20^{\circ}-100^{\circ}$, 1207 the optimal choice of the target cell configuration is similar to the Fermilab 907 design, 1208 but with a kapton cell with endcaps of the Mainz design, and supports above and below, 1209 but not around the cell. Although the Mainz design has obvious lips that appear to have 1210 more material than the E907 flask, in the 907 design there is a $\approx 1 \mathrm{~cm}$ overlap of the 1211 cylinder and the end cap to provide a gluing surface, so there is actually more material in 1212 the 907 design. This configuration is shown in Figure 39.

1213 We are tentatively planning on a $4-\mathrm{cm}$ long $4-\mathrm{cm}$ diameter cell. Based on the beam 1214 line simulations in Section III, this will lead to tails of the beam going through the side 1215 walls of the cell. The cell size might be adjusted in light of the planned measurements of 1216 the beam size, but we note that whatever the cell size the beam halo will go through the 1217 walls, and fiducial cuts on the incoming particle will be a necessary part of the analysis.

1218 There are several contributions to the systematic uncertainty from the cryotarget.

- For operational temperatures about 19 K , the density change in the target is about $1.5 \% / \mathrm{K}$. With calibrated resistors the temperature can be determined to better than 0.1 K and thus the density to $\approx 0.1 \%$.
- The variation of density with pressure is about $0.01 \% / \mathrm{psia}$. Pressure can be determined to at least 0.3 psia, so the uncertainty is small.
- Room temperature H_{2} is largely in the ortho (spins parallel) configuration, but cryogenic H_{2} liquid is $>99.8 \%$ para (spins anti-parallel). The time constant for the conversion is of order a day for pure H_{2}, but typically small amounts of contaminants in the hydrogen shorten the conversion time significantly, an order of magnitude or more. The density difference between the two spin configurations is about 0.6%. As long as the cryotarget is cooled a few hours before data taking, the uncertainty from the ortho-para fractions is small.
- The equation of state is known to about 0.1% for LH_{2}.
- In high-power experiments, there is an issue of energy deposited in the target leading to boiling. For this experiment, the $3 \mu \mathrm{~W}$ expected from the beam is insignificant.
- Thermal radiation is however a significant issue. If we use $\epsilon=1$, as for a black body, the room temperature surroundings radiate $\approx 3.5 \mathrm{~W}$ of power into the cryotarget cell, potentially leading to bubbles and density variations. This energy transfer is typically suppressed by wrapping the target in 8 or so layers of aluminized mylar, to reflect the thermal radiation. The emissivity of aluminized mylar or kapton is ≈ 0.03.
- The length of the target cell varies with temperature. It is possible to estimate the change in length form thermal expansion coefficients, and to measure the change in dedicated tests. This uncertainty is typically a few tenths of a percent.
- The target cell length for the planned design varies by about 5% from the center to the edges. It will be necessary to measure the beam position and angle distributions and use a Monte Carlo to determine the average thickness. Since the central 2σ of the beam are about 2 cm diameter, vs the 4 cm cell, the total variation in length for much of the beam is only about 2%. The uncertainties will have to be evaluated from the simulation, but are likely not more than a few tenths of a percent.
- The position of the target has to be determined relative to the beam. Spectra of reconstructed $z_{\text {target }}$ from particles scattered at large angles can likely determine the z position of the target to $\approx 0.5 \mathrm{~mm}$, but the data cannot be used to determine the transverse positions. The uncertainty typically leads to several tenths of a percent uncertainties in systems with relatively larger curvature of the end caps compared to the beam size. Here it appears to be smaller.

Considering the above points, it appears that the point-to-point systematic uncertainty ${ }_{1257}$ to the luminosity is the same for all points. When beam momenta are changed, the energy 1258 deposited by the beam in the target is so small that the momentum change does not matter. ${ }_{1259}$ The likely issues with the point-to-point uncertainty, which will need to be evaluated based 1260 on the target performance during the run, are whether there are any day-night or seasonal 1261 changes in ambient temperature that lead to differences in thermal radiation and boiling in 1262 the target, and whether the target operates stably. Power glitches or reboots of electronics 1263 could affect the target density.

For the absolute density, there are several effects that are at the 0.1% level, and the 1265 total uncertainty should be about 0.5%. Achieving this uncertainty in practice will require 1266 dedicated measurements to understand what if any target boiling there is from thermal 1267 radiation, and how the target cell length and position vary when the target is cooled. ${ }_{1268}$ Dedicated measurements can be done either optically or with, for example, X-rays.

1269 The simplest way to construct the vacuum system is to mount the targets in a vertical ${ }_{1270}$ vacuum pipe $\approx 15 \mathrm{~cm}$ diameter. The cold head for the target will be at the top of the 1271 tube, above a bellows which will allow the target vertical position to be adjusted between 1272 cryocell, dummy foil, and empty target settings, while allowing all the electronics and ${ }_{1273}$ motion system to be in air. The tube will require thin entrance and exit windows. The 1274 entrance window will be circular with 4 cm diameter, corresponding to an angular range of 127531° in the backward direction. So that the acceptance is not limited by scattered particles ${ }_{1276}$ passing through the thick vacuum wall on their trajectory towards the scintillators, the ${ }_{1277}$ exit window needs to be about 16 cm high, and cover the angle range from -120° to $+120^{\circ}$. ${ }_{1278}$ While the entrance window can be much thinner, about $50 \mu \mathrm{~m}$ of kapton, the exit window

1279 will need to be about $200 \mu \mathrm{~m}$ thick. Because the angle range of the windows is large, 1280 support posts might be necessary.

IX. SCATTERED-PARTICLE SCINTILLATORS

1282 The scattered-particle scintillators are part of the event trigger and help with the particle ${ }_{1283}$ separation via time-of-flight (TOF) measurements. This requires high detection efficiency 1284 for the particles of interest and excellent timing resolution.

1285 The Experimental Nuclear Physics Group at USC is committed to build the scattered1286 particle scintillators for the preset experiment. The group has extensive experience in ${ }_{1287}$ assembling large time-of-flight detectors. It has also designed and prototyped the new ${ }_{1288}$ FToF12 detector for the upgraded CLAS12 at Jefferson Lab. During the next three years 1289 all scintillators will be built, tested at USC, then mounted and commissioned at JLab. 1290 With only the exception of the thickness of the scintillator bars, we are planning to copy the 1291 design and construction procedures of the FToF12 bars. Figure 40 shows CLAS12 FToF 1292 scintillation bars in a cosmic-ray test. The FToF12 scintillation bars are rectangular in

FIG. 40. CLAS12 FToF scintillation bars undergoing cosmic ray testing at USC.

1295 shape with a cross sectional area of $6 \mathrm{~cm} \times 6 \mathrm{~cm}$. Position-dependent time resolutions 1296 have been measured in cosmic tests for scintillator bars of various lengths; see Figure 41.

1297 Average time resolutions of $\sigma_{\text {avg }}=34 \mathrm{ps}$ and $\sigma_{\text {avg }}=51 \mathrm{ps}$ for the $69-\mathrm{cm}$ long and $203-\mathrm{cm}$

FIG. 41. Position-dependent time resolution for two CLAS12 $203-\mathrm{cm}$ and $69-\mathrm{cm}$ long scintillator bars after calibration, event selection, and time-walk correction. The average time resolution is ${ }_{1298} \sigma_{\text {avg }}=51 \mathrm{ps}$ for the $203-\mathrm{cm}$ bar and $\sigma_{\text {avg }}=34 \mathrm{ps}$ for the $69-\mathrm{cm}$ bar, respectively [46].

1300 long bars, respectively, were achieved.
1301 The detector will be made of Saint-Gobain BC-404 plastic scintillators, which have a 1302 high light output and fast rise time. Each end of the scintillator is fitted with black tape, 1303 which masks the corners while leaving a circular window that extends one millimeter into 1304 the area that will be covered by the photocathode. The corner blocking reduces the amount 1305 of reflected light contributing to the leading edge of the PMT signal. Hamamatsu R9779 ${ }_{1306}$ PMTs are then glued to each end of the scintillator. The bare counter is wrapped with ${ }_{1307}$ precision-cut aluminized Mylar and DuPont ${ }^{\mathrm{TM}}$ Tedlar. The Tedlar film extends beyond 1308 each PMT onto the anode, dynode, and high-voltage cables, providing a single light-tight 1309 casing for the entire counter. Details about the construction process and system tests for 1310 quality assurance can be found in Ref. [46. Table X lists the design parameters for the 1311 scintillator walls. The front wall is square and covers at least a horizontal angular range 1312 from 20° to 100° from all points within the target. The back wall is also square with 1313 an increased angular acceptance to account for particles which scatter in the front wall 1314 material.

1315 We have studied the performance of the proposed scattered-particle scintillators with

TABLE X. Design parameters for the scintillator walls.

	Front wall	Back wall
Number of scintillator bars	17	27
Scintillator cross section	$6 \mathrm{~cm} \times 2 \mathrm{~cm}$	$6 \mathrm{~cm} \times 6 \mathrm{~cm}$
Scintillator length	103 cm	163 cm
Target to front-face distance	50 cm	73 cm
Gap between scintillator bars	0.02 cm	0.02 cm
Scintillation material	$\mathrm{BC}-404$	$\mathrm{BC}-404$
Photomultiplier	Hamamatsu R9779	Hamamatsu R9779

${ }_{1316}$ Geant4 simulations of the proposed setup. The particle interactions and their energy 1317 deposition within the scintillators have been calculated. Figure 42 shows examples of such 1318 interactions. Panel (b) shows a relatively rare event which also includes a particle decay, $1319 \mu^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\mu}$. Scintillator bars with energy depositions are marked in red.

1320 Figure 43 shows a measured energy distribution with cosmic rays in units of ADC ${ }_{1322}$ channels for one FToF12 $6 \mathrm{~cm} \times 6 \mathrm{~cm}$ scintillator. The energy deposited by particles ${ }_{1323}$ whose paths do not traverse at least the full thickness of the scintillator is lower than the ${ }_{1324}$ energy of the lower edge of the Landau-like portion of the energy distribution. Simulated ${ }_{1325}$ energy distributions for the $6 \mathrm{~cm} \times 2 \mathrm{~cm}$ and $6 \mathrm{~cm} \times 6 \mathrm{~cm}$ scintillator bars are shown 1326 in Figure 44 for scattered electrons, panel (a), and muons, panel (b), at various beam ${ }_{1327}$ momenta $p_{i n}$. The set of curves with low energy deposition is for the front wall; the set 1328 of curves with high energy deposition is for the thicker back wall. In the studied range, 1329 the energy depositions for $e^{ \pm}$are independent of the beam momentum. The simulation 1330 shows for each event the maximum energy deposition in any front- or back-wall bar. Very ${ }_{1331}$ nearly all events have energy depositions above threshold, $E_{t h}=2 \mathrm{MeV}$, in (at least) one ${ }_{1333}$ bar. The detection efficiency is indeed very high.

1334 A detailed view of the particle detection efficiencies for the scattered-particle scintillator 1335 walls is shown in Figure 45 as a function of the particle scattering angle. All panels are for 1336 the same detection threshold of $E_{t h}=2 \mathrm{MeV}$ but various particles and beam momenta.

FIG. 42. Geant4 simulation of μ^{-}interacting with the two scintillator planes: Panel (a) shows a common event with a μ^{-}depositing energy in one paddle in the first and one paddle in the second plane; $p_{\mu}=150 \mathrm{MeV} / c$. Panel (b) shows a rarer event of an incoming μ^{-}particle with $100 \mathrm{MeV} / c$ momentum which interacts in a paddle in the first plane, and subsequently deposits energy in three paddles in the second plane. Some neutral particles are produced (green tracks). 1338 incident particle. Particles were incident on the 'active' area of the scintillator plane; the 1339 physical size of the plane is slightly larger. The overall geometrical acceptance for the 1340 'active' area is shown in Figure 46.

1341 This one-plane efficiency is practically 100%. The two-plane coincidence requires above1342 threshold hits in both, the front and back planes. It is in all cases well above 99.5%, except 1343 for e^{+}. The 'directional cut' utilizes the fact that scattered particles, which originate in 1344 the target, deposit energy mostly in certain combinations of front- and back-wall scin1345 tillators. For an event to pass this cut, each hit in a scintillator bar of the back wall 1346 must coincide with hits in up to three corresponding neighboring scintillators in the front. 1347 This directional cut does not affect the efficiency much but helps to suppress triggers 1348 from background events which do not originate within the target. Figure 47 illustrates 1349 this correlation of scintillator-bar numbers for various particles with different momenta ${ }^{1350}$ originating in the target volume.

FIG. 43. Measured deposited energy for cosmic rays passing through a FToF12 $6 \mathrm{~cm} \times 6 \mathrm{~cm}$ scintillator bar 46.

FIG. 44. Simulated energy deposition for scattered electrons, (a), and muons, (b), traversing the $6 \mathrm{~cm} \times 2 \mathrm{~cm}$ bars of the front and $6 \mathrm{~cm} \times 6 \mathrm{~cm}$ bars of the back scattered-particle scintillator wall, respectively. The simulation recorded for each event the maximum energy deposition in a scintillator of a given plane.

Table XI summarizes the result of our efficiency estimates. While the μ detection 1353 efficiency remains well above 99% for all momenta, the e efficiency starts to decrease at 1358 thresholds larger than 2 MeV .

1356 Figure 49 shows a simulation of the reconstructed reaction vertex along the beam line, ${ }_{1357} x=y=0$, where the reconstruction only uses the position of hit bars and their geo${ }_{1358}$ metrical position on the lab. Events shown have above-threshold hits in the front and

FIG. 45. Estimated detection efficiency as a function of particle scattering angle for e^{+}, e^{-}, μ^{+}, and μ^{-}and beam momenta of $115 \mathrm{MeV} / c$ and $210 \mathrm{MeV} / c$. The change of momentum of the scattered particle with scattering angle is takenخ்ßto account.

FIG. 46. Estimate of the geometrical acceptance of one scintillator wall as the fraction of highenergy muons originating from the target and uniformly distribution which hit the wall.
${ }_{1359}$ back scintillators walls which fulfill an additional directional cut. The figure shows the 1360 effectiveness of the directional cut.

1362 We have estimated background rates in the scattered-particle detectors. Beam particles, ${ }_{1363} \pi^{ \pm}, \mu^{ \pm}$, and $e^{ \pm}$, at a rate of 1 MHz with momenta of 115,153 , and $210 \mathrm{MeV} / c$, respectively, 1364 were sent in the $+z$ direction and allowed to decay, to scatter off air, or off the target. The 1365 resulting raw rates in one set of the scattered-particle detector planes are summarized in 1366 Table XII and do not include trigger-level or offline analysis cuts other than the detection 1367 threshold and scintillator-bar coincidence requirement as indicated. The background rate 1368 from pion beam particles is dominated by their decay products and can be separated 1369 from the events of interest by time-of-flight measurements. The background events can be 1370 largely suppressed on the analysis level also. For example, the electron induced coincidence ${ }_{1371}$ rate in one scattered-particle detector for a beam momentum of $115 \mathrm{MeV} / c$ is about 336 Hz ${ }_{1372}$ for 1 MHz incident electrons. Requiring a z-vertex reconstruction within the target volume ${ }_{1373}$ reduces this rate to 33 Hz . As all of these particles are of low momentum the background 1374 can be further reduced by a cut on the energy deposition in the second, thick, scintillator 1375 plane. Figure 44 shows that practically all electrons from the events of interest deposit 1376 at least 7 MeV in that plane; requiring a signal of at least 6 MeV reduces the above ${ }_{1377}$ coincidence rate from 33 Hz to about 5 Hz .

FIG. 47. Paddle number correlation between paddle numbers N_{1} and N_{2} from the front- and back-wall scintillators, respectively. The factor α is the ratio of the distances from to the target to the scintillator-wall mid-planes. The beam monfegta are $115 \mathrm{MeV} / c$ and $210 \mathrm{MeV} / c$.

FIG. 48. Multiplicity of scintillator paddle hits in the front- and back-wall scintillators, respectively.
The beam momenta are $115 \mathrm{MeV} / c$ and $210 \mathrm{MeV} / c$.

TABLE XI. Expected average detection efficiency for scattered particles detected in coincidence between the front and back scintillator walls and requiring a three-bar directional cut.

Particle	Beam Momentum	Coincidence efficiency for various signal thresholds			
	(MeV / c)	0 MeV	1 MeV	2 MeV	3 MeV
e^{+}	115	0.9944	0.9918	0.9902	0.9833
	153	0.9955	0.9934	0.9920	0.9852
	115	0.9964	0.9948	0.9939	0.9874
e^{-}	153	0.9994	0.9992	0.9990	0.9933
	115	0.9991	0.9990	0.9989	0.9989
μ^{+}	153	0.9996	0.9995	0.9995	0.9994
	210	0.9997	0.9997	0.9997	0.9995
μ^{-}	115	0.9991	0.9990	0.9990	0.9989
	153	0.9995	0.9995	0.9994	0.9994
	210	0.9997	0.9997	0.9997	0.9995

${ }_{1378}$ One background that we are continuing to study at this point in time is low energy ${ }_{1379}(10-20 \mathrm{MeV})$ electron recoils at forward angles, $<25^{\circ}$ that might generate triggers. The ${ }_{1380}$ rate of these is not large, but they have to be rejected at the analysis level. Most, but ${ }_{1381}$ not all, of these events reconstruct to positions upstream of the target. Because of the 1382 large statistical variations in the energy deposited in materials - see Figure 44 -additional ${ }_{1383}$ information that allows these events to be rejected is desirable. These events appear to ${ }_{1384}$ typically have a forward going "high" momentum beam particle that continues into the 1385 high-precision beam scintillators after the target, which might by itself be sufficient to 1386 remove these events from the analysis. We are also considering a partial third scintillator ${ }_{1387}$ plane for the most forward part of the acceptance, as these low-energy recoils will be ${ }_{1388}$ ranged out before the third plane.

FIG. 49. Simulation of the reconstructed reaction vertex along the beam line, $x=y=0$, using only the scintillator bars for scattered e^{-}(upper panel) and μ^{-}(lower panel), respectively. The distributions are similar for positively charged leptons. Included are all front- and back-wall scintillator paddles with a signal larger than the threshold.

1389 If uncorrected, detection inefficiencies in the scattered-particle detector will lead to 1390 errors in the measured cross sections. The average corrections for detector inefficiencies are ${ }^{1391}$ of the order of 0.1% for $\mu^{ \pm}$and e^{-}and is of the order of 0.4% to 0.9% for e^{+}; see Table XI. 1392 These values require a threshold of $E_{t h}=2 \mathrm{MeV}$. The positron efficiency is reduced due to 1393 possible annihilation processes. The detector inefficiencies show some angular dependence 1394 at low scattered particle momentum (backward angles at $115 \mathrm{MeV} / c$ beam momentum);

TABLE XII. Expected rate in one set of scintillator walls from beam-particle target-scattering and decay in flight from $z=-1.5 \mathrm{~m}$ before the target to 5 m after the target. Scattering off the target and the effect of shielding as indicated in Figure 4 have been included. Values are given in abovethreshold scintillator rate per 1 MHz beam-particle rate with a threshold energy of $E_{t h}=2 \mathrm{MeV}$. The coincidence rate includes a three-bar directional cut.

Beam Particle	Beam Momentum(MeV / c)	Front Wall (Hz)		Back Wall (Hz)		Coincidence Rate(Hz)
		$1^{\text {st }} \mathrm{bar}$	any bar	$1^{\text {st }}$ bar	any bar	
π^{+}	115	12996	49468	13637	46797	29467
	153	10920	30910	12637	33259	26446
	210	7255	15739	10022	16778	14470
π^{-}	115	12972	49336	13604	46787	29468
	153	10958	30901	12683	33330	26483
	210	7368	15913	10118	16921	14598
μ^{+}	115	95	578	137	819	376
	153	66	413	103	578	276
	210	225	933	203	619	195
μ^{-}	115	102	575	133	802	387
	153	63	410	95	561	280
	210	218	935	197	618	204
e^{+}	115	1111	4891	794	1533	254
	153	1133	5019	784	1552	260
	210	1162	5148	828	1641	277
e^{-}	115	1259	5371	918	1770	336
	153	1262	5408	916	1760	324
	210	1232	5389	904	1760	326

1395 see Figure 45. After correction for these effects, we expect the contribution from the

1396 scattered-particle detector to the systematic uncertainties of the absolute cross section to 1397 be less than 0.1%. The uncertainty is larger for $e^{ \pm}$cross sections if the threshold can not 1398 be kept stable. Because of their very similar detector response we expect the contributions 1399 to the systematic uncertainties of relative cross sections for μ^{+}and μ^{-}to be negligible. 1400 Also the $\mu^{ \pm}$and e^{-}relative cross section uncertainties should be much smaller than 0.1%.

X. WIRE CHAMBERS

1402 The wire chambers must provide, neglecting multiple scattering, position resolutions 1403 of $\approx 100 \mu \mathrm{~m}$ and angle resolutions of $\approx 1 \mathrm{mr}$, and be aligned to determine the absolute 1404 scattering angle to at least 1 mr . They must be able to operate at singles rates of a few 1405 hundred kHz , and efficiently detect and track particles that are close to minimum ionizing. ${ }_{1406}$ Chambers with these capabilities have existed for a few decades.
${ }_{1407}$ The construction of the chambers will be led by the MIT group, which has built numer1408 ous chambers in the past. The design will be based on the Jefferson Lab Hall A Bigbite 1409 wire chambers [47, 48]. The Bigbite chamber construction was led by N. Liyanage of UVa, 1410 who initially learned to build chambers as a graduate student with the MIT group.

1411 The Bigbite chambers have been operated in a large acceptance spectrometer with an ${ }_{1412}$ open geometry at an experiment luminosity of $\approx 5 \times 10^{36} / \mathrm{cm}^{2} / \mathrm{s}$, leading to counting rates ${ }_{1413}$ of up to $40 \mathrm{MHz} / \mathrm{m}^{2}$, several times the rates expected in this experiment, while achieving 1414 a position resolution $\sigma \approx 100 \mu \mathrm{~m}$ and a track-finding efficiency of 98%. Figure 50 shows 1415 a relatively clean sample event from one of the Bigbite experiments.
${ }_{1416}$ These wire chambers consist of three sets of chambers containing more than 3200 wires. ${ }_{1417}$ The active area of the front chamber is $140 \mathrm{~cm} \times 35 \mathrm{~cm}$, whereas the active area of the 1418 second and third chambers is $200 \mathrm{~cm} \times 50 \mathrm{~cm}$. Each wire chamber contains six wire planes 1419 that are divided into three groups: $\mathrm{U}, \mathrm{U}^{\prime}, \mathrm{V}, \mathrm{V}^{\prime}$, and $\mathrm{X}, \mathrm{X}^{\prime}$ wires oriented at $+60^{\circ},-60^{\circ}$, 1420 and $+90^{\circ}$ to the dispersive direction of the Bigbite magnet. Each chamber plane consists ${ }_{1421}$ of alternating sense and field wires spaced 5 mm apart, with parallel planes offset by 5 ${ }_{1422} \mathrm{~mm}$. Shifting the second plane by half of the wire spacing helps to remove the left-right ${ }_{1423}$ ambiguity in the track reconstruction, while having wires in three orientations helps both ${ }_{1424}$ to remove ambiguities in the case of multiple tracks and to determine a position even if a

FIG. 50. Event display showing the Bigbite wire chambers and dE and E scintillator planes. In this event two tracks can be seen that fire U, V, and X wires in both chambers shown as well as scintillators in both planes. The scintillator paddle hits are used in the analysis to help determine tracks of interest and reject backgrounds. Several noise hits can also been seen, possibly induced by neutrals due to the large luminosity and open geometry.

1425 wire is inefficient. Cathode planes were placed between the sense-field wire planes, leading 1426 to a cell size of 10 mm wide by 6 mm deep.
${ }_{1427}$ The chambers were constructed by placing wires on printed circuit boards using preci1428 sion positioning jigs. Wire positions were confirmed with an optical surveying system using 1429 a camera with position controlled by a precision stepper motor $(0.5 \mu \mathrm{~m})$. The resolution 1430 of the camera was determined to be $\approx 35 \mu \mathrm{~m}$.
${ }_{1431}$ The Bigbite chambers were operated with a mixture of 50% Argon and 50% ethane ${ }_{1432}$ bubbled through alcohol. All chambers ran at -1600 V and were read out using new 1433 ASIC ("MAD-Chip") amplifier/discriminator (A/D) cards developed by the INFN Padua ${ }_{1434}$ group, which allows operating the chambers at lower voltages and thresholds compared to ${ }_{1435}$ old commercial chamber cards from LeCroy and Nanometric. The LVDS outputs of these ${ }_{1436}$ cards were sent to level translators, which transformed the signal from the A/D cards
${ }_{1437}$ to the standard ECL format. These signal were then input to conventional LeCroy 1877 ${ }_{1438}$ Fastbus TDCs.
${ }_{1439}$ The wire chambers for the proposed experiment at PSI will consist of three chambers ${ }_{1440}$ containing $\mathrm{UU}^{\prime} \mathrm{VV}^{\prime} \mathrm{XX}^{\prime}$ wires, following the Bigbite chamber design. With three chambers 1441 in the Bigbite operating conditions, we have found that the hardware tracking efficiency 1442 is about 98% from an average wire hit efficiency per plane of about 0.98 . This high ${ }_{1443}$ tracking efficiency is required for the planned precision cross-section measurements and 1444 will be monitored throughout the experimental run period. The front chamber will be 1445 centered about 25 cm from the pivot with a size of about $40 \mathrm{~cm} \times 35 \mathrm{~cm}$. The third ${ }_{1446}$ chamber will be centered about 45 cm from the pivot, so that it is just in front of the first 1447 scintillator plane, and will be about $60 \mathrm{~cm} \times 50 \mathrm{~cm}$. The second, middle, chamber will be ${ }_{1448}$ positioned about halfway between the other two. Assuming a resolution of $100 \mu \mathrm{~m}$, and 1449 with 20 cm between planes in the first and third chambers, we have at least an intrinsic ${ }_{1450} 0.7 \mathrm{mr}$ angle determination. It is improved by having more than the minimal four planes 1451 needed to resolve left/right ambiguities, but ultimately limited on an event-by-event basis 1452 by multiple scattering.

1453 The determination of the relative positions of the chambers and the scattering angle 1454 via our plan to use the GEM chambers will be discussed in Section XVII.

XI. TRIGGER AND DAQ

A. Trigger

1457 The goal of the trigger system is to efficiently identify and read out scattered e 's and μ 's, 1458 while suppressing backgrounds such as π-induced events, cosmic rays, μ decays in flight, 1459 low-energy $e^{ \pm}$from δ rays and Bhabha and Moller scattering, and accidental coincidences. 1460 The main trigger requires both that there is a beam e or μ and a scattered particle signal 1461 in the scintillators. The beam PID system described in Section IV identifies efficiently 1462 whether there is a beam e or μ. The beam-particle identification strongly suppresses the ${ }_{1463} \pi$ background, as discussed in Section IIB. A related concern is accidental coincidences. ${ }_{1664}$ For π-induced backgrounds, the π signal from the beam PID system can limit background

1465 read out rates; our intent is to not readout events in which there is both a π and μ or e 1466 in the same RF pulse.

1467 We plan to implement the trigger with a commercial FPGA system, the CAEN v1495, 1468 since this is a system with which we are familiar from working on its development for the ${ }_{1469}$ Fermilab E906 experiment; it is also being used for a number of Jefferson Lab experiments. ${ }_{1470}$ In the Fermilab experiment, the v1495 system is designed for rough tracking through 8 1471 planes of at least 32 scintillator hodoscopes, to determine if there is a high transverse 1472 momentum $\mu^{+} \mu^{-}$pair from a Drell-Yan (or J / ψ) event. (Here the trigger is much simpler, 1473 as described below.) The v1495 is a VME 6 U board. The FPGA has $\approx 20,000$ logic 1474 elements. It comes with 64 dedicated LVDS/ECL input channels, 32 dedicated LVDS 1475 output channels, 2 LEMO I/O channels, and 3 expansion slots for up to 96 additional 1476 channels. All channels operate up to at least 200 MHz .

1477 As shown in Section IX, we have two essentially independent experiments, LEFT and 1478 RIGHT, each with two planes of scintillators, 17 in the front plane and 27 in the rear 1479 plane. With phototubes at each end, we have 176 total signals - roughly half the number 1480 of the Fermilab experiment. We plan to use two v1495s, one for LEFT and one for RIGHT, 1481 using one expansion slot of each to cover the 88 scintillator inputs, along with the e, μ, 1482 and π beam PID signal.

1483 For our main trigger, to identify a scattered particle event we require hits in paddles in 1484 both front and rear planes. Identifying a hit requires that the phototubes at both ends of 1485 the scintillator fire. The two-plane requirement is because, while a single plane trigger is $1486 \approx 100 \%$ efficient, it can misidentify backgrounds such as cosmic rays or low energy particles 1487 as valid scattering events. Furthermore, as discussed in Section IX, we can ensure that 1488 the particle tracks at least crudely point back to the target by requiring that for a given 1489 paddle hit in the first layer the paddle hit in the second layer is one of the three, or perhaps 1490 five, directly behind it.

1491 Many needed efficiency studies can be accomplised using accidental coindences with a 1492 triggering event. We still expect to have a variety of secondary efficiency triggers including 1493 one plane hit which will be read out on a prescaled basis, to keep dead times small. We 1494 do not intend to do any particle identification for the scattered particle at the trigger level 1495 other than rough time of flight cuts, since all PID at the trigger level can have efficiency
issues that might make precise cross sections difficult.
1497 Let us consider the trigger timing in a little more detail. We take as an example the $1498153 \mathrm{MeV} / c$ setting. The IFP SciFi determines whether a particle is an e, μ or π from its ${ }_{99}$ RF time. The particle arrives at the target SciFi about 37,45 , or 50 ns later. A second ${ }_{500}$ RF time measurement again determines particle type. The particle after scattering from 501 the target reaches the scintillator planes in another 6,7 , or 8 ns for horizontal scattering, 502 with about $\pm 2 \mathrm{~ns}$ variations depending on scattering angles. While the SciFis have a small 503 active area and only fraction of ns time variations, the rear scintillator paddles are about 15042 m long, so light propagation time variations cause the trigger pulse to vary by about $1505 \pm 3.5 \mathrm{~ns}$. Thus, in the triggering, if we consider for example timing relative to the top 1506 rear scintillator phototubes, other scintillator phototubes vary by $\pm 3.5 \mathrm{~ns}$, and the beam ${ }_{507}$ PID signals vary by $\pm 5.5 \mathrm{~ns}$, with additional 1 ns offsets between e and μ signals from the 1508 target SciFi and 8 ns offsets between e and μ signals from the IFP SciFi. These estimates 1509 neglect statistical variations in the rise times, which add another ns of time variation to 1510 the system - mainly from the SciFi's. Since the SciFi e and μ signals will be input to the 1511 trigger on different channels, and the offsets vary with beam momentum, it is simplest to 1512 adjust for them in FPGA programming rather then by changing cables. With these timing 1513 variations totaling about $2 / 3$ of an RF period, it should not be a problem at the trigger 1514 level for each e or μ event to only be sensitive to one π RF bucket being in accidental 1515 coincidence.

1516 While only a small fraction $\left(<10^{-4}\right)$ of the e 's and μ 's scatter from the target, there 1517 is an e or μ in the beam in $\approx 3 \%-17 \%$ of beam RF buckets. Thus a concern of the 1518 experiment is accidental coincidences of background events giving signals in the scattered 19 particle scintillators with beam e 's or μ 's. These events can all be efficiently rejected at 520 the analysis level, but have the potential to lead to large DAQ dead times at the trigger 521 level, reducing the statistical precision of the experiment. Thus we have decided to veto 1522 events which also have a beam π in the same RF bucket. Estimated rates for accidental ${ }_{1523}$ coincidences leading to read out of processes such as decays in flight, cosmic rays, or π 1524 scattering were summarized in Table III.

1525 A μ or e beam particle could give a proper beam signal in coincidence with a cosmic 1526 ray through the detector. The cosmic ray rate in vertical scintillator paddles has been
measured to be $\approx 10 \mathrm{~Hz}$, for a total rate in the system of about 1 kHz . This is an 1528 overestimate, as a good fraction of the cosmic events are showers which will fire several ${ }_{1529}$ paddles. A 1 kHz cosmic rate has accidental coincidences with the $1.4 \rightarrow 8.5 \mathrm{MHz}$ total 1530 of e 's and μ 's at a $\approx 28 \rightarrow 170 \mathrm{~Hz}$ rate. The actual trigger rate will be smaller than this. ${ }_{1531}$ The cosmic background is largely single high-energy muons that do not go through both 1532 scintillator planes. Cosmic muons that do go through two scintillator planes might not hit ${ }_{1533}$ paddles that point towards the target. If in practice it is desirable to reduce the cosmic ${ }_{1534}$ background rate even further, we will study using a multiplicity counter to veto events in 1535 which too many scintillator paddles fire, indicative of a cosmic shower. It should be easy to 1536 set this up by comparing multiplicity distributions with the beam on and off. Any cosmics ${ }_{1537}$ read out will be easily rejected at the analysis level: typically they have no track, or it 1538 does not point to the target, or the time between the first and second plane of scintillators 1539 is backward, etc.

1540 The use of beam PID to veto π-induced events was discussed in Section II A.
Although the trigger described here is relatively simple, as with any complicated trigger 1542 its efficiency will need to be evaluated. Its performance can be directly studied using test ${ }_{1543}$ pulses with various timings to simulate the signals arriving under experimental conditions. 1544 Time offsets between various channels can affect the efficiency, but we plan to adopt the 1545 approach of E906 and dedicate some of the logic to allow the FPGA to fine tune the input 1546 signal timing. Time offsets can be calibrated with data, particularly with electrons at ${ }_{1547}$ low momenta, as the electron timing does not vary and electrons are dominant at low 1548 momenta.

B. Data Acquisition

As discussed earlier concerning the rates shown in Table II, the nominal DAQ rates 1551 for this experiment range from about $700 \mathrm{~Hz} \rightarrow 5.5 \mathrm{kHz}$. This rate is high enough that 1552 reduced read out rates and statistics from DAQ dead time are a concern. Here we plan 1553 to decrease the demands on the DAQ system with two easily implemented techniques, so 1554 that the dead times are small and the muon statistics do not suffer.

1555 First, a dual DAQ system would use two separate systems reading out the two detector

1556 arms, doubling the rate capability. This has been a common solution we have used for ${ }_{1557}$ Jefferson Lab experiments with similar issues - two arms both with high rates that we 1558 wish to have take data for the same period, with reduced dead time. The dual DAQ 1559 is implemented with one DAQ providing a gate needed by the second for the second to 1560 take data. The second DAQ is started first, but scalers do not count and triggers are not 1561 accepted until the gate from the first DAQ is presented. At the end of a run, the first 1562 DAQ is turned off first. As a result, the two DAQs take data for essentially the same 1563 amount of time, although offset by a few tens of ns in an of order 1000 s long run. The 1564 difference is negligible. In this system, scaler signals can be sent to one system or both; 1565 sending them to both systems provides a nice check of systematics.

1566 The second technique involves prescaling certain trigger types. Rates of both scattering ${ }_{1567}$ events of interest and backgrounds are highest in the forward direction. Since the forward1568 angle statistics are greater than needed, forward-angle events can be prescaled. Also, the 1569 electron rate is generally much higher than the muon rate. Thus we can prescale down 1570 the electron triggers and still have better statistics for electrons than for muons. Except ${ }_{1571}$ for $210 \mathrm{MeV} / c$, where the electron rate is about $1.5 \times$ the muon rate but the trigger rate ${ }_{1572}$ is below 1 kHz , the electron elastic scattering rate is $3-50$ times the μ elastic scattering ${ }_{1573}$ rate. Thus we can prescale the electron rate by a factor of two or more so that the total 1574 trigger rate is no more than $1-1.5 \mathrm{kHz}$, and the number of electron scattering events read 1575 out remains a factor of $2-10$ times the number of μ elastic scattering events read out. ${ }_{1576}$ As the collaboration has largely been active within the Jefferson Lab program, and this 1577 experiment is similar in many respects to Jefferson Lab experiments, the implementation 1578 of the fast DAQ of this experiment with JLab CODA would be fairly easy. However, it 1579 appears more difficult to port both CODA and the EPICS slow controls system to PSI 1580 than it is for the collaboration to learn and implement the PSI MIDAS system, which 1581 already supports the slow controls and standard data acquisition modules. Thus, the 1582 collaboration has decided to learn and use MIDAS for the DAQ system.

C. Readout

- The scattered particle scintillators consist of 88 double-ended paddles, leading to 176 bases and TDC and ADC channels. Adding in the beam scintillators we require 180 high-precision TDC channels and 180 ADC channels. Since these scintillators have $\approx 50 \mathrm{ps}$ resolution, $\approx 25 \mathrm{ps}$ TDCs are needed.
- The beam SciFi detectors have 256 fibers at the IFP and 85 fibers at the target, leading to 682 channels of ADC and TDC. The SciFi resolution is ≈ 1 ns, so $0.5-\mathrm{ns}$ level TDCs are sufficient.
- The GEM chambers have their own standalone DAQ system, which exists. It will be necessary to implement readout of the GEM data into the data stream.
- The scattered particle wire chambers have a total of about 2500 wires, requiring the same number of TDC channels with ns-level resolution. ${ }_{1597}$ precision TDCs, 100 low precision TDCs, and about 27 ADCs, plus some spare modules. 1598 These modules could be housed in 7-10 crates.

A perfectly clean 100% efficient event would have 10 hits from the 5 SciFi planes, 18 1600 hits from the 18 wire chamber planes, and 4 hits from the two planes of scattered particle 1601 scintillators, leading to 32 TDC signals and 14 ADC signals. With ≈ 100 ns gates for 1602 ADCs and TDCs, there is typically 1 background beam particle, which typically neither 1603 scatters nor decays - the total rate of scattered particles is only a few percent of the beam 1604 rate - leading to 10 more ADC and 10 more TDC signals. Thus it appears that with zero ${ }_{1605}$ suppression event sizes are less than 1 kB , and the data rate will be of order $1 \mathrm{MB} / \mathrm{s}$. This 1606 data rate is small for any modern data acquisition system, and not a problem to record 1607 with modern networks, computers, and disk drives.

1608 The anticipated trigger rate is of order 1 kHz . Since the event sizes are small, the dead 1609 time associated with this trigger rate is hard to determine at present; it depends mainly 1610 on the conversion and readout times of the electronics modules used in the DAQ, which 1611 have not yet been identified - we hope to loan spare electronics rather than purchase or 1612 construct new modules, and the available electronics will depend on when the experiment 1613 runs.

In addition to the event readout, it is necessary to have scaler channels to count the 1615 number of pulses in the scintillator phototubes. This is useful for the 180 channels of 1616 scattered particle scintillators and downstream beam monitors, and necessary for beam 1617 normalization with the 682 channels of beam SciFi. In addition, a small number of channels 1618 are needed for counting ORs of the plane-by-plane SciFi response, the beam PID system 1619 outputs, and the various trigger types. Assuming 32 channel scalers, 28 are needed. Scalers 1620 do not need to be read out often, and increase the total data rate very little.

1621 Consequent with the relatively modest DAQ requirements which can be met with fairly 1622 straightforward techniques, the collaboration has not to date focused on details of the 1623 DAQ system. Our intent is to develop more detailed plans during fall 2012 as we work on 1624 test measurements at the $\pi \mathrm{M} 1$ channel.

XII. RUN PLAN

1626 After the initial installation and commissioning of equipment, described in Section XVII, 1627 data taking can commence. We plan on a series of data runs interspersed with various 1628 calibrations, described in Section XVIIC.

1629 Based on estimated beam fluxes, cross sections, and efficiencies, the run requires about 16306 months of beam time. Because of uncertainties in the beam fluxes, we have not at this ${ }_{1631}$ point tried to optimize the division of time between the various measurements, we have 1632 instead simply opted for 1 month of time at each of the 6 settings: 3 beam energies $\times 2$ 1633 beam polarities. Once the fluxes and background rates are better established, the optimal ${ }_{1634}$ division of beam time can be established.

1635 Because we are attempting a high-precision cross section measurement, it is possible 1636 that issues will arise that require some modifications in our approach. As a result our ${ }_{1637}$ plan is to perform one of the six kinematic settings in one month of beam time, and to 1638 extensively analyze the data during a $1-2$ month period before continuing the experiment. ${ }_{1639}$ The order of the kinematic settings will be decided after the fluxes are determined in the 1640 fall 2012 test run.

XIII. DATA ANALYSIS

Here we discuss various steps in the data analysis leading to the raw cross sections. 1644 along with trigger and beam PID information determined at the hardware level. From 1645 these raw data, we will do the following:

- The IFP SciFi timing will be analyzed with ADC corrections to the TDC values. Generally both planes should fire so the IFP timing is improved by more than a factor of $\sqrt{2}$ over the hardware result. With multihit TDCs, it will be possible to determine the PID and momentum of the triggering particle and background particles, as long as the background particles are from other RF buckets.
- The target SciFi TDCs will be similarly analyzed to the IFP TDCs. In addition for each particle a position in the target SciFi array will be determined. The three planes of the target SciFi will allow an improvement in timing of around $\sqrt{3}$.
- The combination of IFP and target SciFi's will allow the time of flight of the beam particles to be determined. The $e-\mu$ time differences range from 4.3-13.0 ns at the three beam momenta, while the μ - π time differences range from $3.0-8.0 \mathrm{~ns}$.
- The GEM data will be analyzed to find the real tracks between the three chambers and remove ghost tracks. The GEM data also provide crude timing information. The GEM tracks will point to positions at the target SciFi array and at the target.
- The GEM and target SciFi comparison of times and positions allows the triggering trajectory to be determined.
- The downstream high-precision scintillator will record accidental coincidence hits from non-triggering beam particles. These will generally be offset from other RF buckets. These data will be used to build up an RF time spectrum that will allow continuous monitoring of the beam momentum and / or RF time changes.
- The scattered particle scintillators will be analyzed similarly to the SciFi array. The analysis is basically the same, though much higher in precision. The analysis
also determines a position along the paddle from the difference in time between the phototubes at the ends of the bars. Spectra of ADCs and paddle differences between the two planes will allow simulations to be checked. The position in the scintillators allows a consistency check with the wire chamber track.
- The wire chamber TDC data will be corrected for offsets, used to determined drift distances, and used to generate a track. There are sufficient extra planes that the track can be found even if some hits are missing, allowing the wire efficiencies to be determined. The track found will project to the target and to the scintillators. The projection to the scintillators can confirm the consistency of the trigger with the generated track.
- The GEM and chamber tracks combined determine the target interaction position, the scattering angle, and also a distance of closest approach - generally the two tracks do not actually intersect. Cuts can be applied on these quantities to remove nearly all the events from particle decays in flight, or scattering from the last GEM, for example.
- The RF time determined from the scintillators can now be corrected for the flight path.

At this point relevant quantities have been determined, cuts can be applied, and counts 1686 can be summed up.

A. Removing Backgrounds

1688 The estimated rates of the desired elastic scattering and background processes were 1689 estimated earlier and summarized in Table II. Backgrounds are mainly removed through 1690 target reconstruction cuts and timing cuts. The timing cuts are enhanced by consider1691 ing path length corrections using trajectories measured in the wire chambers and taking 1692 into account the momentum of the beam particle measured at the IFP, which leads to 1693 measurable changes in β and RF time. In principle $d E / d x$ cuts are possible - and they 1694 are of course made in setting scintillator thresholds - but the π 's, μ 's and e 's in this

FIG. 51. RF time distributions at the scattered particle scintillator for a beam momentum of 115 MeV / c. Results are for particles from the region of the target, and are shown for two choices of the angle as the path length and thus RF time vary with angle.

1695 experiment are all close to minimum ionizing, and will not be resolved with $d E / d x$ cuts 1696 alone. Finally, residual backgrounds can be subtracted by measuring and subtracting the 1697 background rates.

1698

1. RF Timing Cuts

1699 Previously, we studied the ability to identify particles at the trigger / hardware level ${ }_{1700}$ using the RF timing in the beam IFP and target SciFi arrays. The results were shown 1701 in Figures 16, 17, and 18, and the statistics of particle identification were summarized in 1702 Table V . These results were based on a signal from a single plane of the two in the IFP ${ }_{1703}$ SciFI array and of the three in the target SciFi array. At the analysis level, the beam RF 1704 timing is improved by roughly a factor of $\sqrt{2}$, and consequently the beam SciFi detectors ${ }_{1705}$ provide improved beam particle identification in the analysis.

1706 In Table Π we summarized expected rates for the desired μp and $e p$ elastic scattering ${ }_{1707}$ reactions as well as for several background reactions. Particles, and to some degree reac1708 tions, can be further identified through RF timing with the scattered particle scintillators.

FIG. 52. RF time distributions at the scattered particle scintillator for a beam momentum of 153 MeV / c. Results are for particles from the region of the target, and are shown for two choices of the angle as the path length and thus RF time vary with angle.

FIG. 53. RF time distributions at the scattered particle scintillator for a beam momentum of 210 MeV / c. Results are for particles from the region of the target, and are shown for two choices of the angle as the path length and thus RF time vary with angle.

1709
Figures 51, 52, and 53 show simulated RF time spectra in the scintillators for the desired $1710 \mu p$ and $e p$ reactions as well as a number of background reactions. The relative numbers of 1711 electron- and muon-induced events are roughly based on the rates given in Table II while 1712 the number of π-induced events is arbitrary. Several conclusions can be made from these 1713 spectra.

- Electron events, $e p$ and $e \mathrm{Al}$ elastic scattering, can be distinguished from all other events, but all electron events occur at the same time, as $\beta_{e} \approx 1$. (The $\approx \mathrm{MeV} / c$ Moller and Bhabha recoils do have $\beta \approx 0.9$.) The widths of these distributions largely reflect the scintillator timing resolution, so the electrons serve to calibrate the scintillator timing.
- The $\mu \mathrm{Al}$ and μp elastic distributions also overlap. The difference in momentum of the scattered muons from the two targets is not sufficient to create a measurable RF time difference, so these reactions cannot be distinguished. The widths of these distributions largely reflect the variations in β_{μ} due to the 3% momentum bite of the $\pi \mathrm{M} 1$ channel.
- The background decay in flight of μ^{\prime} s, e.g., $\mu^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\mu}$, leads to a trigger rate about 100 times larger than the elastic scattering rate. Here we show a reduced rate of decays corresponding to decays in the region of the target. Since the decay e has $\beta \approx 1$, the RF time distribution of these events shifts to shorter times. Although the tail of the decay distribution overlaps the μ elastic scattering distribution, the distributions are separated in two-dimensions looking at RF time vs. beam momentum. Figure 54 shows the correlation between beam momentum relative to central channel momentum and RF time in the region of the μ events, to show how the μ decays can be separated. Not shown are the μ decays upstream of the target, which are rejected by reconstructed target position cuts. These events have a shorter flight path to the scintillators, so their RF time distribution is shifted further.
- The πp elastic backgrounds are largely suppressed by the beam SciFi RF timing. Any residual events are largely well separated by the beam scintillator RF timing, although again a 2-dimensional cut on RF time vs. beam momentum is needed at
$115 \mathrm{MeV} / c$, as shown in Figure 55. Although the μ elastics and π decays can be well separated, the π elastic scattering and μ decay backgrounds run into each other due to the different slopes of β vs. momentum. It is only needed to reject both, so this is not an issue.
- The decay of π 's, e.g. $\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$, is shifted compared to πp elastic scattering to earlier times. The shift grows larger as the scattering angle increases. The difference is largely due to geometry as $\beta_{\text {decay } \mu} \approx \beta_{\pi}$. The maximum angle for the decay μ 's relative to the π 's in the beam is about $20^{\circ}, 15^{\circ}$, and 11° for the three beam momenta of 115,153 , and $210 \mathrm{MeV} / c$, respectively. Thus the decay μ 's going into the scintillators come from π decays far upstream that have shorter flight paths to the scintillators. The minimum distances upstream, corresponding to the maximum angle decays, are given in Table XIII. All of the π decays lead to tracks in the chambers that do not point back to the target, and the decays at higher energies or into larger angle detectors occur far upstream of the target, so that they do not give signals in the target SciFi detector or GEM chambers. These results suggest that shielding around the beam line can dramatically reduce the rate of μ 's from π decays in the detectors.

TABLE XIII. The minimum distance upstream of the target that a π must decay to lead to a decay μ in selected scintillator paddles.

Momentum (MeV / c)	115	153	210
Minimum distance (m) for 25° scintillator	0.5	1.0	1.7
Minimum distance (m) for 60° scintillator	2.1	3.0	4.3

1755 To summarize, we have demonstrated that with the $50 \mathrm{ps}(\sigma)$ resolution of the South 1756 Carolina scintillators, it should be possible to uniquely identify elastic electron and muon ${ }_{1757}$ scattering events from the target. This result is largely independent of information from ${ }_{1758}$ any other detectors, though the beam SciFi detectors also identify beam particle types.

FIG. 54. Momentum vs RF time correlation for two angles at a beam momentum of $210 \mathrm{MeV} / c$, focusing in on the RF time region of μ decays in flight (left band) and μ elastic scattering (right band).

FIG. 55. Momentum vs RF time correlation for two angles at a beam momentum of $115 \mathrm{MeV} / c$, focusing in on the RF time region of μ and π interactions. The left band is π decays in flight, the right band in μ elastic scattering, and the crossed bands in the center are μ decays in flight and π elastic scattering.

FIG. 56. (Left) Calculated energy losses of particles in scintillator as a function of momentum. (Right) ADC signal (energy loss in scintillator) vs RF time from the PSI PIBETA experiment. The measurement was done in the mid 1990s with a 3 mm thick scintillator and $116 \mathrm{MeV} / \mathrm{c}$ beam in the π E1 channel. This figure was taken from the PIBETA webpages at http://pibeta.web.psi. ch/docs/publications/ketevi_diss/node19.html. While the calculated and observed ratios of π to μ energy loss agree well, the electron is calculated to have $\approx 20 \%$ more energy loss than the π, but instead has $\approx 50 \%$ less.

2. Energy Loss Cuts

1760 Determining energy loss in thin scintillators is an established technique for particle 1761 identification. However, the statistical variations in energy loss prevent it from being a 1762 clean method of identification. Figure 56 shows calculations of energy losses in scintillator 1763 along with an experimental result taken at a beam momentum very close to our lowest 1764 beam momentum. The calculated energy losses are based on the NIST ESTAR and PSTAR 1765 range and energy loss tables at http://physics.nist.gov/PhysRefData/Star/Text/ 1766 ESTAR.html and http://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html. 1767 As discussed above, particle identification with RF timing appears entirely adequate 1768 for this experiment. Scintillator pulse height measurements are not needed for particle 1769 identification, though they are needed for corrections to the RF timing determination, 1770 are useful to monitor consistency of performance, and might be of some help if there 1771 are unanticipated backgrounds. (We expect to study our understanding of backgrounds 1772 during the planned fall 2012 tests.)

FIG. 57. Reconstructed interaction position along the beam line for two angles at a beam momentum of $115 \mathrm{MeV} / c$.

3. Target Reconstruction Cuts

1774 Determining the interaction point suppresses backgrounds that do not come from the 1775 target. Figures 57 and 58 show a simulated reconstructed image of the target along the 1776 beam line. In these plots the relative numbers of events are from Table II, but the absolute 1777 numbers are arbitrary. The simulation included multiple scattering in the final GEM 1778 chamber, the vacuum and target entrance windows, the liquid hydrogen, the target and 1779 vacuum exit windows, and an estimated resolution (including multiple scattering) of the 1780 wire chambers. The simulation uses a target cell 4 - cm long by 4 - cm diameter, with a 0.125 1781 mm kapton wall and 0.1 mm of superinsulation. The interaction position is found from 1782 the "intersection" of the incoming ray measured by the GEM chambers with the outgoing 1783 ray measured by the scattered particle chambers. We use the technique common to proton 1784 polarimetry measurements [49] of using the center point of the common perpendicular to 1785 the two rays as the interaction position - in general the two rays do not intersect, but the 1786 common perpendicular is the closest to intersection. The simulation does not include the 1787 effects of energy slightly increasing multiple scattering as the particles propagate through 1788 the detectors and target, or the curvature of the target windows.

1789 The results shown in Figures 57 and 58 indicate a strong angle dependence to the 1790 target reconstruction but a weaker beam momentum dependence. The distance of closest

FIG. 58. Reconstructed interaction position along the beam line for two angles at a beam momentum of $210 \mathrm{MeV} /$ c.

1791 approach of the two rays appears to be angle independent, so the angle dependence largely 1792 results from the $\sin \theta$ apparent shortening of the length of the target rather than any 1793 significant difference in the multiple scattering with angle. At smaller angles, it will be 1794 necessary to measure the scattering rates from a dummy target and perform subtractions 1795 of the elastic end-window scattering events. At larger angles, it might be possible to 1796 achieve a smaller total uncertainty with z-target cuts, to limit the number of end window 1797 events that need to be subtracted, but here we simply assume that these subtractions will 1798 be done.

1799 Having to measure and subtract backgrounds increases the statistical uncertainty about 1800 a factor of two. It is conventional to use a dummy target with thicker foils than in the 1801 actual target, to match the thickness of the dummy in radiation lengths to the thickness 1802 of the target. For the $4-\mathrm{cm}$ target with 0.125 mm windows, this leads to dummy foils 1803 about 6 times thicker than the target walls. As shown in Figure 6, the background carbon 1804 elastic scattering rate averages about 0.3 times the signal H elastic scattering rate and 1805 decreases with increasing scattering angle. With this ratio, uncertainties are optimized by 1806 measuring the signal + background for $\approx 75 \%$ of the beam time, and the background for $1807 \approx 25 \%$ of the beam time. The optimization shows a shallow minimum, and the uncertainty 1808 increases by roughly a factor of 1.4 at all angles, for constant beam time.

1809 The background subtraction can be based on absolute luminosities. It can be cross

1810 checked particularly at the larger angles through the z-target distribution shape, as the 1811 hydrogen is about flat near the center of the target and the window peaks are clearly 1812 visible.

XIV. RADIATIVE CORRECTIONS

Radiative corrections procedures for electron-proton scattering are well established. However, there are several issues that must be accounted for in this experiment.

- The large mass of the muon compared to the electron significantly reduces the bremsstrahlung corrections, which yield the largest correction. However, many implementations of radiative corrections work in the ultra-relativistic limit, where the lepton mass is considered to be negligible compared to Q^{2}, and this is a poor approximation for muon scattering. However, the formalism commonly used in radiative corrections at Jefferson Lab [50] does not make this approximation, and is well suited to muon scattering.
- The peaking and extended peaking approximations, where radiated photons are assumed to be emitted only in the direction of one of the charged particles, is also not as appropriate for the low energies of the proposed measurements. Ingo Sick provided and tested a version of the radiative correction procedure used in our simulation that does not apply the peaking or extended peaking approximations [51. Afanasev et al. [52] provided a calculation that was previously used in the analyses of polarized electron scattering at Jefferson Lab. Their calculation does not use the peaking approximation or soft-photon approximation.
- Coulomb corrections and hard two-photon exchange (TPE) contributions cannot be calculated with the same level of precision as the other contributions. While bremsstrahlung by electrons is enhanced due to a small electron mass, two-photon exchange is independent on the lepton mass in an ultra-relativistic case. For lower energies considered in this experiment, terms that do not conserve lepton helicity become important in the scattering amplitude, especially for the muons. To date, there has not been sufficient low Q^{2} data with enough precision to require
that the full structure of the amplitude of lepton-proton elastic scattering be considered, with the data analyzed in terms of six generalized form factors (instead of the three form factors used in phenomenological analysis of TPE corrections in ultrarelativistic electron scattering). This issue will again need to be studied in this experiment. Some information about these lepton-helicity-violating amplitudes can be obtained from single-spin transverse beam asymmetries at small Q^{2} - see the QWeak report at http://www.jlab.org/conferences/ugm/Tuesday/ wdeconinck_qweak_ugm2012.pdf.
- At very low Q^{2}, calculations within a hadronic framework [39, 40, 53] are typically expected to be more reliable, and are in good agreement with a low Q^{2} TPE expansion [54, which is expected to be valid up to $Q^{2}=0.1 \mathrm{GeV}^{2}$ and so covers our entire Q^{2} range. However, even at low Q^{2} the loop integral is over infinite momentum range and two-photon exchange is not precisely understood. Theoretical models show the trend that TPE has a smaller effect at lower Q^{2}. It can be understood since hard TPE amplitudes do not have a $1 / Q^{2}$ Coulomb singularity, as opposed to the Born amplitude.
- TPE corrections for muon scattering are being performed, and the comparison of the positive and negative leptons will allow for a test of the TPE calculations for both electrons and muons, while the average of the different-signed lepton results will allow for an extraction of the electron and muon scattering cross sections where all charge-dependent corrections cancel.

To summarize, while radiative corrections are standard and well-established in electron 1860 scattering, care must be taken in this experiment that the radiative correction calculations 1861 are correctly implemented without invalid approximations. Parts of the radiative correc1862 tions are expected to be suppressed for muons due to the larger muon mass. Two-photon 1863 exchange corrections are generally expected to be small, and should be similar for elec1864 trons and muons. However, two-photon exchange remains more poorly understood than 1865 one would like.

XV. SYSTEMATICS

 1871 and track reconstructions). We need to know / study possible kinematic offsets and 1872 their effects. Finally, we need to understand theoretical corrections such as Coulomb and 1873 radiative corrections. We also need to consider absolute vs. relative efficiencies.1874 Counting the beam particles with the SciFi arrays and FPGA system was discussed in 1875 Section IV. The efficiencies for determining the numbers of electrons and muons are high, 1876 and the probability of misidentifying a particle as an electron or muon is very small, as 1877 summarized in Table V. With the expected beam fluxes, the estimated contribution of 1878 misidentified particles is at most at the level of a few tenths of a percent. As discussed, 1879 these probabilities can be calibrated, and the measured fluxes can be corrected. The 1880 important thing is that the beam PID signals sent to the scalers to be counted are also the 1881 signals sent to the trigger to enable taking events; in this case any inefficiencies cancel. As 1882 a result, we estimate that the relevant fluxes can be determined to the 0.1% level absolute. 1883 There is no uncertainty for a given angular distribution, but the 0.1% is also a reasonable 1884 estimate for the relative uncertainty for different polarities or beam momenta.

1885 The GEM chamber efficiency must be known, as the flux of incident particles is deter1886 mined by the SciFi array, but if the particles are not tracked by the GEMs they cannot 1887 be analyzed, changing the cross section. But the GEM chamber efficiency can be well 1888 determined with high statistics from accidentals in the data. With 10 MHz beam we 1889 expect in a $\approx 100 \mathrm{~ns}$ window about 1 background beam particle in each event. Generally 1890 the background particle will give a signal in the target SciFi array and the downstream 1891 high-precision scintillator, hence it must have passed through the GEMs. These back1892 ground particles will be tracked by the GEMs, and the GEM efficiency will be precisely 1893 determined. Similarly, it will be necessary to put fiducial cuts on trajectories of particles 1894 in the tails of the beam that are heading near the target cell side walls. But these events 1895 are counted in the scalers as contributing to the beam flux. The analysis of accidental

1896 coincidences will allow us to determine for each particle type the fraction of the beam that 1897 does not pass the fiducial cuts, and allows us to correct the beam flux for these events.

1898 The systematic uncertainties concerning the target thickness were discussed in Sec1899 tion VIII. The relative uncertainties in the target thickness should be small, $\approx 0.1 \%$, as 1900 long as the target cools for several hours before use to convert to the para spin con1901 figuration and as long as its operational temperature and pressure are about constant. 1902 Operational data will be needed to estimate this uncertainty. There will be an absolute 1903 uncertainty of up to $\approx 1 \%$ related to knowledge of the target length, which is affected by 1904 the target position and the beam distribution over the target as well as the length and 1905 equation of state. If the beam conditions vary with time, or the beam distribution over 1906 the target varies with polarity or momentum or type of particle, the relative systematic 1907 uncertainty between these settings could be larger than $\approx 0.1 \%$; this will require data to 1908 evaluate.

1909 The number of scattered particles depends on knowing the efficiencies of the scattered 1910 particle scintillators and wire chambers well. Scintillator efficiency simulations were dis1911 cussed in Section IX. The scintillator efficiencies were large, with only a few tenths of a 1912 percent inefficiencies for most particles, but about 1% inefficiencies for positrons. Energy 1913 and angle variations are mild. We have not evaluated uncertainties in the simulation, 1914 but the agreement between the energy losses observed in cosmic tests and the simulated 1915 energy losses suggests the absolute and relative uncertainties are small, as long as the 1916 discriminator threshold is under control. We do propose in Section XVII a direct test of 1917 the scintillator efficiencies with the beam.

1918 Associated with the scintillator efficiency are uncertainties from dead time at the hard1919 ware level. The highest rate in any scintillator paddle, based on the simulations shown in 1920 Table XII, is about 100 kHz in the most forward paddle. Rates in other scintillators are 1921 less. This leads to a dead time of 0.2% or less, and consequently a small uncertainty on 1922 the correction.
${ }_{1923}$ The wire chamber efficiencies were estimated to be 98% for individual wires and 98% 1924 for track reconstruction. The individual wire efficiencies can be monitored from the events 1925 in which tracks are found. Determining the tracking efficiency from the data is more of 1926 an issue since some triggers will not come from particles passing through the chambers.

FIG. 59. Left: change in cross section from a +1 mr offset in the scattering angle. Right: change in the cross section from multiple scattering. Estimates were done with the Kelly form factors.
${ }_{1927}$ In Section XVII, we indicate how the chamber efficiency can be quantified during the 1928 calibration period. As indicated in Section IIA, the rates in the chamber are modest, 1929 and as long as high voltage and gas mix are stable the chamber performance should be 1930 highly efficient and stable as well. Thus, we expect that the systematics of wire chamber 1931 efficiencies are minimal.

1932 The beam momentum was presented in Figure 20. As discussed in Section V, we 1933 expect to be able to determine the particle momenta distribution to better than 0.1% in 1934 calibrations with material put at the IFP, but slightly worse than this with the actual 1935 detectors in place. Averaging over the distribution of incoming momenta has a relatively 1936 small effect, and the angle-to-angle variation is small.

1937 The angle sensitivity due to offsets and multiple scattering were presented in the pro1938 posal. Figure 59 shows how the cross section changes from offsets in the central angle 1939 and from multiple scattering leading to averaging over scattering angles. The effects are 1940 similar in magnitude. The estimated precision in the central angle determination is 0.5 mr 1941 - see Section XVII. Further study is needed to determine if this can be improved using the 1942 overlap of data at difference beam momenta. Since the multiple scattering effect is similar 1943 at all energies, we should be able to correct the data for it. However, for our purposes here 1944 we conservatively estimate each of these effects leads to a 0.5% overall systematic and a
0.3% point-to-point uncertainty.
1946 In determining the number of counts it is also important to - here we adopt a simple 1947 viewpoint - determine the acceptance of each kinematic bin. The bins are determined by 1948 the wire chamber reconstructions. By putting the cuts for the analyzed data within the 1949 active area of the chamber, in leading order the number of events in- vs. out-scattering 1950 perhaps we should say mis-reconstructing - cancels. The major effect is the multiple scat1951 tering effect from the strong variation of cross section vs. angle, which we have accounted 1952 for. Thus the main question here is the precision of knowing the size and position of the 1953 chambers. The accuracy of wire position is at the level of $35 \mu \mathrm{~m}$ at a chamber to target 1954 distance of order 30 cm . This corresponds to an solid angle uncertainty at the level of 19552×10^{-4}, or 0.02%. The uncertainty in distance of the chamber from the pivot point is 1956 determined by manufacturing of the chamber and the table on which it and the GEMs are 1957 mounted - since it is really the GEm vs. chamber positioning that is important. These 1958 distances should be at the level of $100 \mu \mathrm{~m}$ out of 30 cm , for a solid angle uncertainty of 1959 about 7×10^{-4}, or 0.07%. The point-to-point uncertainty will be smaller.

1960 The uncertainties on the radiative corrections need to be more closely studied before we 1961 can confidently quote a systematic uncertainty. It will require re-examining the codes to 1962 make sure that neither of the usual approximations, the high-energy limit $Q^{2} \gg m^{2}$ or 1963 the low energy limit $m^{2} \gg Q^{2}$, is present in the codes to be certain the limits are correct. 1964 Even so, for the time being we estimate the uncertainty as 0.5% for both relative and 1965 absolute uncertainty, and this uncertainty largely comes from the two-photon exchange 1966 mechanism. According to current theoretical estimates, there are negligible differences 1967 between two-photon exchange for e^{\prime} s and μ 's - this will be tested in the measurements 1968 so in the $e p$ to μp comparison the radiative correction uncertainty is very conservative.

1969 The uncertainties described above are summarized in Table XIV.
1970 There are additional effects that are hard to evaluate at present, but which will affect the 1971 ultimate systematic uncertainty. One is the stability of the results with time. Unstable 1972 power supplies and varying electronics temperature for example can lead to efficiency 1973 variations. While many parameters can be monitored by slow controls, we cannot be 1974 sure there are no issues until we see in the data that there are only normal statistical 1975 fluctuations. A second effect is the sensitivity of the analysis to cuts. We have argued

TABLE XIV. Summary of systematic uncertainties on the cross section. The Total uncertainties result from adding the individual uncertainties in quadrature.

Systematic	Relative Uncertainty	Absolute Uncertainty
	$(\%)$	$(\%)$
beam flux	0.1	0.1
GEM efficiency	<0.1	<0.1
target thickness	0.1	1.0
scintillator efficiency	0.1	0.1
wire chamber efficiency	0.1	0.1
beam momentum sensitivity	0.1	0.2
angle determination	0.3	0.5
multiple scattering	0.3	0.5
solid angle	0.1	0.1
radiative corrections	0.5	0.5
Total	0.7	1.4

1976 in this report that backgrounds are small, and assuming Gaussian variations we find for ${ }_{1977}$ example that timing peaks of particles are well separated, and cuts can be cleanly done. 1978 But often in practice there are non-Gaussian tails, and their effects must be evaluated 1979 from the data.

XVI. RADIUS EXTRACTION

1981 Here we provide projections for the extraction of the proton charge radius based on 1982 the run plan, statistics, and systematic uncertainties presented in this report. The run 1983 plan will be further optimized once we have detailed information on the rates and beam 1984 characteristics for the different beam momentum settings.

1985 The counting statistics are based on the following:

- Beam e and π fluxes were taken from $\pi \mathrm{M} 1$ beam line measurements [38]. The μ flux is a crude estimate based on $\pi \mathrm{M} 1$ measurements for positive polarity at $160 \mathrm{MeV} / c$ and for negative polarity at $270 \mathrm{MeV} / c$. Total beam flux is limited to 10 MHz .
- The liquid hydrogen is a $4-\mathrm{cm}$ long cylinder, with a density of about $0.07 \mathrm{~g} / \mathrm{cm}^{3}$.

The Kelly form factors [26] were used to estimate the scattering cross section.

- Target entrance and exit windows total $250 \mu \mathrm{~m}$ of kapton. Elastic cross sections were calculated with a parameterization of the carbon form factor used in 555the chemical formula for kapton is $\mathrm{C}_{22} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{5}$, so we expect that carbon elastic scattering is the dominant contribution. The oxygen form factor is roughly similar in shape to the carbon form factor, but falls faster with Q^{2}, while the hydrogen in the kapton foil amount to about 0.3% of the hydrogen in the cryotarget. Quasifree scattering rates were estimated from the number of protons in the kapton, assuming equality of free and quasifree cross sections, and neglecting the neutron since G_{E}^{n} is small at low Q^{2}.
- Beam time is 1 month for each momentum at each polarity. Statistical uncertainties are scaled up by a factor of 1.4 , to account for the loss of statistical precision associated with measuring and subtracting scattering from the kapton walls, as discussed in Section XIII A3. The factor of 1.4 over the simple estimate results from dividing the beam time optimally, with about $1 / 4$ of the time spent determining the wall background with a dummy cell with 6 x thicker walls, to match the radiation lengths of the target. The factor accounts for the loss of beam time on the hydrogen target and the increase in statistical uncertainty from the subtraction of the endcap contributions.
- The efficiency from trigger through analysis is taken to be 70%. This accounts for dead time, detector efficiency, PID cuts, and not triggering on events with a π beam particle within a 20 ns window.

To extract the radius, we combine measurements from all three beam momenta, and 2013 fit the extracted charge form factor with a quadratic polynomial in Q^{2}. A simple linear 2014 fit provides a more precise measure of the slope, but because the form factor is not linear 2015 over the full Q^{2} range of the measurement, it yields a systematic offset in the value. We 2016 estimate this 'truncation' uncertainty in the fit by performing a linear fit to data which 2017 follow the standard dipole form for G_{E}, and using the error made in the radius extraction 2018 as a one-sigma estimate for the error associated with truncating the fit after the linear or

2019 quadratic terms. For the Q^{2} range of this measurement, the truncation error is 0.0236 fm 2020 for a linear fit and 0.0040 fm for the quadratic fit. Since the latter is smaller than the 2021 uncertainties associated with the statistics and systematic uncertainties, we perform a 2022 quadratic fit for the primary extraction.

2023 In the extraction of the radius, we also include an independent normalization factor for ${ }_{2024}$ each of the three beam momentum settings. This increases the uncertainty on the ex2025 tracted slope, but accounts for the possibility of any small changes in the normalization of 2026 the extracted cross sections for the three different beam energies. For the quadratic fit with 2027 three floating normalization factors, the counting statistics (after scaling down to account 2028 for the endcap subtraction) yield an uncertainty of 0.0080 fm on the radius for μ^{+}and μ^{-} 2029 measurements. The positron measurements should have a statistical uncertainty 20-30\% 2030 smaller, while the electron measurements have more than 10 times the muon count rate, 2031 and so will yield an uncertainty of approximately 0.0030 fm . The estimated point-to-point 2032 systematic uncertainties of 0.55% yields an uncertainty of 0.0100 fm in the fit. Combining 2033 the statistical, experimental systematic, and truncation uncertainties, we obtain a com2034 bined uncertainty on the extracted radius of 0.0140 fm for $\mu+$ and $\mu^{-}, 0.0130 \mathrm{fm}$ for e^{+}, 2035 and 0.0110 fm for e^{-}measurements. Combining the μ^{+}and μ^{-}extractions will allow for 2036 improved statistics, but only a slight reduction in the systematic uncertainties, yielding 2037 a combined muon scattering extraction uncertainty of $\delta_{R}=0.0110 \mathrm{fm}$, a better than 1.5% 2038 measurement of the charge radius.

2039 Note that the lowest momentum setting does not add much to this combined result, as 2040 the two higher settings have a greater lever arm in Q^{2}, while also reaching very low Q^{2} 2041 values which minimizes the uncertainty in the extrapolation to the known value at $Q^{2}=0$. 2042 If the low momentum setting data is analyzed by itself, the range in Q^{2} is small enough that 2043 the truncation error is not unreasonable, even for a liner fit. In this case, the relative slope 2044 of the data within this single setting is sufficient, and the normalization does not have 2045 to be determined. By itself, the low momentum setting yields a statistical uncertainty 2046 of 0.0080 fm , a systematic uncertainty of 0.0070 fm , and a truncation uncertainty of 20470.0100 fm , for a combined uncertainty of 0.0150 fm , comparable to the uncertainty from 2048 the μ^{+}and μ^{-}extractions from the higher Q^{2} data sets. This yields another extraction of 2049 the radius to be compared to the higher momentum data, although because the uncertainty

FIG. 60. (Left) Recent extractions of the proton radius from electron and muon based measurements, along with the projected uncertainties from the proposed measurements. (Right) The same recent proton radius results, but with projections for the relative uncertainties for the proposed measurements. See text for details.

2050 is not dominated by the statistics, combining the μ^{+}and μ^{-}data does not improve the 2051 combined result significantly. The combined results from the extractions using the low 2052 momentum data set and the higher momentum data sets yield uncertainties near 0.0100 2053 fm.

2054 Figure 60 shows the existing extractions along with the projections for our proposed 2055 measurements. We show results for e^{+}, e^{-}, μ^{+}, and μ^{-}separately, where we combine 2056 the radius extractions from the lowest beam momentum setting and the analysis from the 2057 high beam momentum settings. The left panel presents estimates of the absolute radius 2058 determined independently in each case. However, certain uncertainties are common to all 2059 of our data, particularly the target thickness, so the relative uncertainties are significantly 2060 smaller than the absolute uncertainties. Thus Figure 60 also shows a determination of 2061 the relative radius from the different polarities and for e vs. μ. The projected relative 2062 uncertainties are close to a factor of two better than the projected absolute uncertainties; 2063 this is discussed further below.

2064 Note that the fits tend to be more stable when additional parameters are included when 2065 using the continued fraction (CF) form [2], rather than the polynomial expansion, or when 2066 using the z-pole expansion [56]. Thus, the truncation uncertainties estimated above are 2067 likely to be significant overestimates, making the stand-alone analysis of the lowest energy

2068
setting significantly more powerful.
2069 As mentioned above, combining the radius extractions from the $\mu^{ \pm}$and $\mathrm{e}^{ \pm}$measure2070 ments improves the statistical uncertainty, but has little impact on the systematic un-
certainty because many of the contributions (e.g. from any small angle offset or beam 2072 energy uncertainty) have a similar or identical effect for all of the different lepton beams. ${ }_{2073}$ However, this means that in comparison of the different data sets, many of these sys2074 tematics partially or completely cancel. So in the two-photon exchange extraction from 2075 the comparison of e^{+}vs. e^{-}or μ^{+}vs. μ^{-}, or in the direct comparison of electron and 2076 muon scattering results, these uncertainties are significantly smaller. In addition, if we 2077 are making a comparison of two sets of measurements, rather than an extraction of the 2078 absolute charge radius, then the truncation error we make by performing a linear fit is 2079 not important. If the electron and muon data both give the same form factor, then the 2080 truncation error made in a linear fit will be in both the cases, and will not modify the 2081 comparison. There will be a very small difference in this effect, due to the slightly different 2082 distribution of the statistics in Q^{2} for electrons and muons, but this difference is rather 2083 small.

2084 So in the two-photon exchange or lepton universality tests, one can perform the simple 2085 linear fit of the entire data set to extract the radius. This yields a statistical uncertainty of 20860.0045 fm , a systematic uncertainty below 0.0040 fm (as this number does not account for 2087 the cancellation of some systematics), and no truncation error. Thus, for comparisons of 2088 the different running conditions, a relative measurement of the proton radius with uncer2089 tainty better than $0.0055 \mathrm{fm}(0.6 \%)$ can be achieved. This is a factor of six smaller than 2090 the discrepancy between the values from current electron- and muon-based extractions of 2091 the proton charge radius.

XVII. COMMISSIONING AND CALIBRATION

2093 Running the experiment successfully will require that the beam line and detectors be 2094 thoroughly and precisely understood. These measurements will be done in three parts. 2095 First, we will undertake a series of commissioning measurements during the fall of 2012 2096 to check our understanding of the beam line properties, especially to better determine
the muon rates. Second, at the start of the experiment, there will be a period of system 2098 commissioning that includes ensuring the equipment is operating properly. Third, during 2099 the course of the experiment, particularly as we go to new beam energies, there will be 2100 an ongoing series of systematics checks. Some parts of these measurements have been 2101 discussed previously.

A. Fall 2012 Measurements

The intent of the planned sequence of measurements for fall 2012 is to determine prop2104 erties of the μ beam and confirm that planned detector and target designs are sufficient 2105 for the experiment.

2106 The sequence of measurements planned is as follows:

- Commissioning. Set up data acquisition with a high resolution scintillator positioned approximately at the target position.
- F12-1: Determine central beam momentum. This measurement is done with negative polarity beam, and flux reduced by closing the FS11 jaws. The scintillator RF time measurements allow the π and μ momenta to be determined from time differences with the electron peak. As indicated in Table VII, the momentum is measured with $0.1 \% \rightarrow 0.4 \%$ resolution, so the central momentum can be determined to better than 0.1%. This measurement determines the beam e, μ, and π composition at the same time. The measurement will be done both with reduced FS12 jaws, to narrow the beam momentum spread as a check of resolution, and with the full channel momentum acceptance of 3%.
- F12-2: Determine channel dispersion for muons. The channel dispersion for π 's at DR8 is $7 \mathrm{~cm} / \%$, with a resolution of 0.1%. Due to the different production mechanism for μ 's, we might expect that the resolution is degraded even though the dispersion should be the same. To confirm the position-momentum correlation and resolution for π 's, μ^{\prime} 's, and e^{\prime}, the $F 12-1$ measurements will be repeated with collimators at the intermediate focal position, DR8. As shown in Figure 21, 3 slits at positions of $\delta p=0 \%, \pm 1.3 \%$ with widths of 0.1% are resolvable at all planned
momenta. Thus we plan on a sieve slit with 3 slots, each 7 mm wide, and adjacent slots separated by 9.1 cm , center to center. The collimator needs to be about 3 cm thick to generally ensure that particles going through it lose enough energy to fall outside the channel acceptance, and thus do not overlap the $-\delta$ peak. At this point we will also determine the vertical limits of the muons at DR8 that can reach the target position, by blocking off the central region of the beam until no muons reach the target.
- F12-3: Determine channel dispersion with and energy loss in DR8 detector. Using the same channel setting with the DR8 scintillating fiber detector installed will lead to $\approx 1 \mathrm{MeV} d E / d x$ for all particle types and a corresponding shift in the timing spectrum. The detector will have to be commissioned first, confirming that all channels are operational and efficient at the high-voltage settings. This measurement is intended to confirm the $d E / d x$ spectrum resulting from the detector. Because the detector has double ended readout, this measurement will also allow the vertical extent of the beam at the IFP to be confirmed.
- F12-4: Determine beam size and divergence. We expect to have two UVa GEMs available for measurements of the size and divergence of the beam in the target region. While the π beam is well measured, the uncertainty here is whether the μ beam has significantly different properties from the π beam. The μ 's from decays in flight after the channel do, but we expect that the μ 's from the production target are not significantly different.
- F12-5: Determine target energy spectrum. We will repeat the measurements of F124 with an added thickness of material corresponding to the thickness of all beam detectors placed at the IFP. This is intended as a measurement of the spectrum incident on the target. (These measurements will entail mismatching the channel dipoles to determine the lower energy part of the spectrum.)
- F12-6: Proton absorber measurements. While the channel should be symmetric between \pm polarities, the proton background is not. The high rates of protons in the channel can be eliminated with an estimated $0.6-4.8 \mathrm{~mm}$ of plastic absorber,
keeping rates in the DR8 scintillating fiber detector low. But since energy losses are statistical, we will vary the thickness of plastic absorber to confirm the minimum amount needed to keep the background proton rate sufficiently small. Note that as this measurement is being done, in each case we are also determining the beam properties at the target, and whether multiple scattering has a significant effect. We do not expect one, as multiple scattering is small compared to the beam divergence.
- F12-7: Study beam halo. The beam halo arises from the decay of beam π 's and μ 's, and should be well simulated, except for some uncertainty from particles decaying in the region of the last magnetic elements of the channel. Here we plan to use the configuration of F12-3 for the channel, but put the target scintillator in various positions where the scattered particle scintillators and wire chambers will go, to sample the background rates of μ 's from π decays in flight and e 's from μ decays in flight. As part of this measurement we will test reducing the background rates using a shielding wall.
- F12-8: Target backgrounds. We will do a simple study of target backgrounds using a thin CH_{2} target, the GEM chambers, and the scintillator to check our estimates of the Moller, Bhabha, and δ-ray backgrounds.
${ }_{2171}$ Our approach here is that it is valuable in attempting a high-precision experiment to 2172 be able to confirm systematic effects with data in the actual experimental conditions, 2173 even though much of what we hope to determine can be done through simulations. In 2174 addition, adequate statistics for all these measurements can be taken in a short time. ${ }_{2175}$ The overhead of getting the measurements set up and the system working, plus changing 2176 configurations, dominates. The statistics in sampling the beam can be made equal to the ${ }_{2177}$ proposed statistics of the cross section measurement in data acquisition times of about 1 2178 hour.

B. Commissioning at the Start of the Experiment

Immediately preceding the start of the experiment, there will be a period of installing 2181 equipment and performing basic commissioning tasks to ensure its functionality. An exam-

2182 ple is installation and cabling of scintillators, plateauing of high voltage, and determination 2183 of time offsets. Much of this work can be done without the use of the $\pi \mathrm{M} 1$ beam, but 2184 brief periods of beam would be useful. It is typical for an experiment of this size to take 2185 several weeks to install and commission the basic functioning of the detectors.
${ }_{2186}$ The beam tests described above for the fall 2012 period largely do not have to be redone. 2187 We do plan during the run to continuously monitor the beam momentum (F12-1) after 2188 the target, interspersed with occasional empty-target runs that determine the spectrum 2189 incident upon the target. The measurements of the beam energy spectrum (F12-5) will 2190 likely be repeated, as the beam line detectors as built will probably be slightly different 2191 from our anticipated detectors as of fall 2012. The beam halo studies (F12-7) will be 2192 repeated in the as built detector configuration with the installed shielding to determine if 2193 there are modifications possible that reduce background rates.

2194 Knowing the scattered particle scintillator efficiencies is crucial to carrying out this 2195 experiment. In light of this, it is a useful to run, in advance of the main installation of 2196 the experimental equipment, a test with a low-rate beam into a few paddles from the 2197 first wall with paddles from the second wall placed behind them, to verify the scintillator 2198 efficiency. A loose trigger can be used, and the measured distributions in the second layer 2199 can be compared to simulation. It should be sufficient to do this test for three angles 2200 of incidence varying the scintillator angles and separations to match the conditions for 2201 scattered particles.

2202 An important aspect of the experimental systematics is knowing the scattering angle 2203 precisely. Experimentally, this means the relative chamber positions need to be well cali2204 brated. Typically this is a survey problem, but here we outline an approach to determine 2205 the position with data. The problem is illustrated in Figure 4. No tracks through the 2206 GEM chambers will also directly pass through the scattered particle chambers. (There is 2207 a small flux of nearly horizontal cosmic rays that can pass through both scattered parti2208 cle chambers.) If there were tracks that went directly between the chambers, then these 2209 straight-through tracks could be used to calibrate the chamber positions.

2210 The way to calibrate the angles precisely then involves moving the chambers in a precise 2211 way so that straight-through tracks allow the relative angles of the GEM and drift cham2212 bers to be calculated. Figure 4 suggests how to do this. First, the GEM chambers will be

2213 mounted on a platform that allows them to be slid upstream by about 15 cm . Second, the 2214 drift chambers are mounted on a rotating table, and will be rotated to several positions, 2215 with straight-through tracks aligning the chambers to the GEMs at several angles. The 2216 simplest way to implement precise angle changes is through the use of precision dowel 2217 holes. The dowel holes can be machined to a precision of $\approx 10 \mu \mathrm{~m}$, at a radius of ≈ 50 2218 cm , leading to relative angle positioning of $\approx \sqrt{2} \times 10 \mu \mathrm{~m} / 50 \mathrm{~cm}=0.03 \mathrm{mr}$. Thus, the 2219 determination of the relative angles of the chambers will be determined entirely by limits 2220 from the multiple scattering and precision of angle determination of the GEM and drift 2221 chambers.

2222 The GEM chambers determine positions at the level of $\approx 100 \mu \mathrm{~m}$. Two GEM chambers ${ }_{2223} 40 \mathrm{~cm}$ apart then determine the angle to 0.35 mr . However, the GEM chambers are 0.6% ${ }_{2224} L_{\text {rad }}$ thick, and the multiple scattering in the final GEM is what limits knowledge of the 2225 track. By using high-momentum pions in the channel for this measurement, multiple 2226 scattering can be limited to $\theta_{m s} \approx 1.8 \mathrm{mr}$.
${ }_{2227}$ The drift chambers also have nominal resolutions of $\approx 100 \mu \mathrm{~m}$, and the drift chamber 2228 should be able to determine angles to $\approx 0.7 \mathrm{mr}$, neglecting multiple scattering. Multiple 2229 scattering within the chamber adds about 0.5 mr to this, for a total chamber resolution 2230 of 0.9 mr .
${ }_{2231}$ Finally, the distance between the final GEM chamber and the drift chamber is about 22321 m of air, with a multiple scattering of 1.3 mr . This can be reduced to 0.6 mr using a 2233 Helium bag instead.
${ }_{2234}$ Thus, the resolution for determining the relative angle is $1.8 \mathrm{mr}+0.9 \mathrm{mr}+1.3 \mathrm{mr}=2.4$ ${ }_{2235} \mathrm{mr}$ with air, or 2.1 mr with a helium bag. The resolution for determining the transverse 2236 chamber position is $\approx 2 \mathrm{~mm}$. Of course, these are the estimated r.m.s. widths of the ${ }_{2237}$ distributions that we will measure. Determining the angle or position of the chambers 2238 involves determining the centroid of these distributions, which we estimate can be done 5 2239-10 times better than the resolution, or to at least 0.5 mr and 0.4 mm . Adding back in the 2240 uncertainty in positioning the chambers as we rotate the drift chamber table or slide the ${ }_{2241}$ GEM chamber table does not significantly affect this. A detail to be concerned with at the 2242 mechanical design stage is that the GEM chamber alignment does not change when they ${ }_{2243}$ are moved from their production data position back upstream to the calibration position.

The determination of the angle of the drift chambers also provides a powerful test of the 2245 tracking efficiency of the drift chambers. If at low beam rates there is a track in the GEM 2246 chambers pointing into the drift chambers, and a signal from a rear triggering scintillator, 2247 then the track passed through the wire chambers. This allows both the wire efficiency and 2248 the tracking efficiency to be determined. The same logic also applies to determining the 2249 GEM chamber efficiency.

2250 During the commissioning phase it will also be important to determine that backgrounds 2251 are under control. An initial measurement can be done of the empty target background; 2252 with only air in the beam line and the GEM chambers and target SciFi array out of 2253 the beam, all events in the scattered particle wire chambers and scintillators will come 2254 from decay particles, scattering from air, background radioactivity including cosmic rays, 2255 and scattering from the downstream scintillator. With the beam GEMs and target SciFi 2256 in place, background associated with these detectors can be determined. It might be ${ }^{2257}$ possible to install small additional amounts of shielding to further reduce beam-related 2258 backgrounds.

C. Calibrations During the Experiment

The commissioning activities should provide functioning detectors and a working data 2261 acquisition system. In addition the alignment of the detectors will be determined. While 2262 many of these activities do not need to be repeated, there are additional calibrations that 2263 need to be performed at each beam setting, and some that need to be monitored regularly. 2264 Determining the beam momentum was discussed in Section V . This will be a dedi2265 cated measurement for each beam momentum setting. Related to the beam momentum 2266 calibration is the calibration of the RF timing and the efficiency of the beam particle ${ }_{2267}$ identification FPGA system. Setting up the FPGA system for each configuration has al${ }_{2268}$ ready been discussed in Section IVB. This is basically the same measurement as the beam 2269 momentum determination, setting up the cuts for particle types and varying the incident 2270 flux to understand the system efficiencies. Note that because the RF time separation of ${ }_{2271}$ particles depends on the beam momentum and position of the beam line SciFi detectors, 2272 an initial part of these procedures during the actual run will be determining if the beam

2273

2274 As indicated in Figure 4, we plan to have a high-precision scintillator downstream of the 2275 target. This scintillator will allow us to continuously monitor for variations in the beam 2276 particle and time / momentum distributions, although it will not provide an absolute 2277 measurement due to interactions with the target. If there are indications of changes, it 2278 will be necessary to perform another beam momentum and particle identification system 2279 calibration. At present, it is believed that there is little variation in the RF time of the 2280 2281 this better in the initial phases of the run with the high-precision scintillators.

Finally, we note that the detectors are in general redundant, which allows efficiencies 2283 to be determined from the data. The beam SciFi's have 2 planes at the IFP when 1 is 2284 needed, and 3 planes at the target when 2 are needed. There are 3 GEM and chambers 2285 instead of the 2 needed, and 3 drift chambers as well in each arm. For the scattered 2286 particle scintillators, we do not have additional layers, but based on the simulations we 2287 should be able to confirm the efficiency found in the simulations through a comparison of 2288 the ADC spectra measured for good events compared to the simulated spectra. Thus the 2289 data itself should continuously provide calibrations of the detector efficiencies.

XVIII. COLLABORATION

We summarize the institutional responsibilities for the major components of experimen2292 tal hardware in Table XV. In addition, Guy Ron of Hebrew University is responsible for 2293 coordinating the data acquisition system, John Arrington of Argonne is responsible for 2294 analysis and fitting, Katherine Myers of Rutgers University will coordinate simulations, 2295 and Andrei Afanasev of George Washington University is responsible for radiative correc2296 tions. Ron Gilman is contact person for the experiment, but the collaboration includes 2297 a core group of people who have been working together collegially in cases for up to 25 2298 years, and we expect to operate largely by consensus.

TABLE XV. Institutional responsibilities for experimental hardware.

Component	Person	Institution
Beamline and shielding	Konrad Dieters	PSI
Beam SciFi's	Eli Piasetzky	Tel Aviv
GEMs	Michael Kohl	Hampton
GEMs (for fall 2012 tests)	Nilanga Liyanage	UVa
Target	Ron Gilman	Rutgers
Drift chambers	Shalev Gilad	MIT
High precision scintillators	Steffen Strauch	South Carolina

${ }_{2299}$ [1] P. J. Mohr, B. N. Taylor, and D. B. Newell, Rev.Mod.Phys. 80, 633 (2008), arXiv:0801.0028 [physics.atom-ph]
[2] I. Sick, Phys.Lett. B576, 62 (2003), arXiv:nucl-ex/0310008 [nucl-ex]
[3] R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, et al., Nature 466, 213 (2010)
${ }_{2303}{ }_{\square}$ [4] J. Bernauer et al. (A1 Collaboration), Phys.Rev.Lett. 105, 242001 (2010), arXiv:1007.5076
2304 [nucl-ex]
2305 [5] X. Zhan, K. Allada, D. Armstrong, J. Arrington, W. Bertozzi, et al., Phys.Lett. B705, 59 (2011), arXiv:1102.0318 [nucl-ex]
${ }^{2307}$ [6]
6] B. Batell, D. McKeen, and M. Pospelov, Phys.Rev.Lett. 107, 011803 (2011), arXiv:1103.0721 [hep-ph]
[7] V. Barger, C.-W. Chiang, W.-Y. Keung, and D. Marfatia, Phys.Rev.Lett. 108, 081802 (2012), 3 pages, 3 figures. Version to appear in PRL, arXiv:1109.6652 [hep-ph]
[8] G. Miller, A. Thomas, J. Carroll, and J. Rafelski, Phys.Rev. A84, 020101 (2011), arXiv:1101.4073 [physics.atom-ph]
[9] J. Carroll, A. Thomas, J. Rafelski, and G. Miller, Phys.Rev. A84, 012506 (2011), 11 pages, 1 figure. v2: Enhanced introduction and minor change to concluding numerical value (interpretation unchanged). v3: Minor changes, matches version published in Phys. Rev. A, arXiv:1104.2971 [physics.atom-ph]
[10] J. D. Carroll, A. W. Thomas, J. Rafelski, and G. Miller, AIP Conf.Proc. 1354, 25 (2011), delayed arXiv submission. To appear in 'Proceedings of T(R)OPICALQCD 2010' (September
${ }^{2319} 26$ - October 1, 2010). 7 pages, 1 figure. Superseded by arXiv:1104.2971, arXiv:1105.2384
2320 [physics.atom-ph]

2321 [11] G. Miller, (2011), private communication
2322 [12] A. De Rujula, Phys.Lett. B693, 555 (2010), arXiv:1008.3861 [hep-ph]
2323 [13] A. De Rujula, Phys.Lett. B697, 26 (2011), arXiv:1010.3421 [hep-ph]
2324 [14] I. C. Cloet and G. A. Miller, Phys.Rev. C83, 012201 (2011), arXiv:1008.4345 [hep-ph]
2325 [15] M. O. Distler, J. C. Bernauer, and T. Walcher, Phys.Lett. B696, 343 (2011), 6 pages, 4
${ }^{2326}$ figures, final version includes discussion of systematic and numerical errors, arXiv:1011.1861
2327 [nucl-th]
2328 [16] B. Y. Wu and C. W. Kao, (2011), arXiv:1108.2968 [hep-ph]
2329 [17] C. E. Carlson and M. Vanderhaeghen, (2011), arXiv:1109.3779 [physics.atom-ph]
2330 [18] G. Paz, (2011), arXiv:1109.5708 [hep-ph]
2331 [19] R. J. Hill and G. Paz, Phys. Rev. D 82, 113005 (2010)
2332 [20] R. J. Hill and G. Paz, Phys. Rev. Lett. 107, 160402 (2011)
2333 [21] L. Cardman, J. Lightbody Jr., S. Penner, S. Fivozinsky, X. Maruyama, W. Trower, and
2334 S. Williamson, Phys.Lett. B91, 203 (1980)
2335 [22] E. Offermann, L. Cardman, C. de Jager, H. Miska, C. de Vries, et al., Phys.Rev. C44, 1096
$2336 \quad$ (1991)
2337 [23] L. Schaller et al., Nucl.Phys.A 379, 523 (1982)
2338 [24] W. Ruckstuhl, B. Aas, W. Beer, I. Beltrami, K. Bos, et al., Nucl.Phys. A430, 685 (1984)
2339 [25] R. Ellsworth, A. Melissinos, J. Tinlot, H. Von Briesen, T. Yamanouchi, et al., Phys.Rev. 165,
$2340 \quad 1449$ (1968)
2341 [26] J. Kelly, Phys.Rev. C70, 068202 (2004)
2342 [27] L. Camilleri, J. Christenson, M. Kramer, L. Lederman, Y. Nagashima, et al., Phys.Rev.Lett.
$2343 \quad 23,153$ (1969)
2344 [28] I. Kostoulas, A. Entenberg, H. Jostlein, A. Melissinos, L. Lederman, et al., Phys.Rev.Lett.
$2345 \quad$ 32, 489 (1974)
2346 [29] A. Entenberg, H. Jostlein, I. Kostoulas, A. Melissinos, L. Lederman, et al., Phys.Rev.Lett.
2347 32, 486 (1974)
2348 [30] L. Camilleri, J. Christenson, M. Kramer, L. Lederman, Y. Nagashima, et al., Phys.Rev.Lett.
$2349 \quad 23,149$ (1969)
2350 [31] V. Tvaskis, J. Arrington, M. Christy, R. Ent, C. Keppel, et al., Phys.Rev. C73, 025206 (2006),
2351 arXiv:nucl-ex/0511021 [nucl-ex]
2352 [32] J. Arrington et al., "A Measurement of Two-Photon Exchange in Unpolarized Elastic 2353 Electron-Proton Scattering," Jefferson Lab experiment 05-017.

2354 [33] A. Gasparian et al., Jefferson Lab PAC38 proposal PR-11-1xx, unpublished.
2355 [34] R. Gilman, unpublished.

2356 [35] G. Ron, E. Piasetzky, and B. Wojtsekhowski, JINST 4, P05005 (2009), arXiv:0904.0686 2357 [nucl-ex]

2358 [36] J. Beringer et al. (Particle Data Group), "The Review of Particle Physics," (2012)
2359 [37] P. J. Mohr, B. N. Taylor, and D. B. Newell, ArXiv e-prints (2012), arXiv:1203.5425
2360 [physics.atom-ph]
2361 [38] R.A. Schumacher and U. Sennhauser, "Particle Fluxes in π M1," unpublished, 1987.
2362 [39] P. G. Blunden and I. Sick, Phys.Rev. C72, 057601 (2005), arXiv:nucl-th/0508037 [nucl-th]
2363 [40] J. Arrington, P. Blunden, and W. Melnitchouk, Prog.Part.Nucl.Phys. 66, 782 (2011),
2364 arXiv:1105.0951 [nucl-th]
2365 [41] J. Arrington, Phys.Rev.Lett. 107, 119101 (2011), arXiv:1108.3058 [nucl-ex]
2366 [42] J. Bernauer, P. Achenbach, C. Ayerbe Gayoso, R. Bohm, D. Bosnar, et al., Phys.Rev.Lett.
$2367 \quad 107,119102$ (2011)
2368 [43] E. L. Lomon, Phys.Rev. C64, 035204 (2001), arXiv:nucl-th/0104039 [nucl-th]
2369 [44] P. Reimer et al., Fermilab experiment 906, http://www.phy.anl.gov/mep/SeaQuest/index.
2370 html.
${ }_{2371}$ [45] E907 target web pages are at: http://ppd.fnal.gov/experiments/e907/Targets/
2372 CryoTarget.html Shut Stop
2373 [46] R. Gothe, E. Phelps, R. Steinman, and Y. Tian, "CLAS12 Forward Time-of-Flight at USC:
2374 A Comprehensive Update", Department of Physics and Astronomy, University of South Car-
2375 olina, unpublished, November 2009, http://www.physics.sc.edu/~gothe/research/pub/
2376 FToF12-review-11-09.pdf
2377 [47] N. Liyanage, "Commissioning of Tracking Package for Bigbite Spectrometer," unpublished, $2378 \quad 2012$.

2379 [48] M. Mihovilovic, K. Allada, B. Anderson, J. Annand, T. Averett, et al., Nucl.Instrum.Meth. 2380 686, 20 (2012), arXiv:1201.1442 [nucl-ex]

2381 [49] R.D. Ransome, "Measurement of the Free Neutron-Proton Analyzing Power and SPin Transfer 2382 Parameters in the Charge-Exchange Reaction at 790 MeV ," Ph.D. thesis, Los Alamos Report 2383 LS-8919-T, 1981.

2384 [50] R. Ent, B. Filippone, N. Makins, R. Milner, T. O'Neill, et al., Phys.Rev. C64, 054610 (2001)
2385 [51] F. Weissbach, K. Hencken, D. Rohe, I. Sick, and D. Trautmann, (2004), arXiv:nucl-
2386 th/0411033 [nucl-th]
2387 [52] A. Afanasev, I. Akushevich, and N. Merenkov, Phys. Rev. D 64, 113009 (2001)
2388 [53] P. Blunden, W. Melnitchouk, and J. Tjon, Phys.Rev. C72, 034612 (2005), arXiv:nucl-
2389 th/0506039 [nucl-th]

2390 [54] D. Borisyuk and A. Kobushkin, Phys.Rev. C75, 038202 (2007), arXiv:nucl-th/0612104 [nucl-
2391 th]
2392 [55] S. Boffi, M. Bouten, C. C. D. Atti, and J. Sawicki, Nuclear Physics A 120, 135 (1968)
${ }_{2393}$ [56] R. J. Hill and G. Paz, Phys.Rev. D82, 113005 (2010), arXiv:1008.4619 [hep-ph]

[^0]: ${ }^{1}$ Issues related to fitting and 2γ corrections have much more effect on extractions of the magnetic form factor and radius at low Q^{2}, due to the dominance of the electric form factor in most low Q^{2} cross section measurements.

[^1]: ${ }^{2}$ The momenta chosen are based on nominal detector positions, and will be re-optimized once the exact configuration of the experiment is known. Studies indicate that the momenta might change by a few MeV / c, which does not lead to significant differences in any projections in this report.

[^2]: ${ }^{3}$ In these simulations the shield wall was 1.5 m upstream of the target, but the conclusions are the same.

