MUSE Technical Design Review PSI, 25 July 2012

Backgrounds & Shielding Katherine Myers Rutgers University

Total elastic event rates:

Electrons:	Rate (Hz)
+115 MeV/c	55
+153 MeV/c	22
+210 MeV/c	1.9
-115 MeV/c	55
-153 MeV/c	40
-210 MeV/c	9

Muons:	Rate (Hz)
+115 MeV/c	17
+153 MeV/c	11
+210 MeV/c	1.7
-115 MeV/c	3.5
-153 MeV/c	3.8
-210 MeV/c	1.4

Target Window Backgrounds:

Ratio of window background rate to elastic μp rate

(Note: these used the old cross section formula for μp scattering, μAl and μC are unchanged, effectively leading to these ratios now being smaller)

Cell window choices:

Aluminum versus Kapton (mostly Carbon)

Based on the size of the cross sections, Kapton is the beneficial choice: 125 microns thick

Target Window Backgrounds:

Window background rates (elastic):

eC: ~3 times smaller than ep,

μC: 4-10 times smaller than μp (larger difference at lower momenta)

Other contributions:

- \rightarrow quasielastic scattering: ~ Z as opposed to Z², suppressed
- \rightarrow pion scattering from windows: order of magnitude smaller than πp events
- → Above additional backgrounds can in principle be simulated with GEANT4, and will be implemented in the future

Empty cell measurements:

- \rightarrow Resolution poor at forward angles
- → Empty cell: dummy foils ~6 times thicker than actual windows (to match radiation length)
- → Spend ~15% of time measuring rates on the empty cell for a subtraction

Beam profile at target:

Beam line ends (after extension) ~0.9 m upstream of the target:

115 MeV/c Muon beam X Profile at target: vacuum

Possible for low-energy tail to interact with unwanted components of the scattering chamber (10-15 x's thicker than the hydrogen)

→ Can place fiducial cuts based on GEM tracks, will study collimation of the beam at the end of the shielding wall or upstream of the scattering chamber to reduce unwanted backgrounds

Energy loss/multiple scattering:

GEANT4 simulation of energy loss, multiple scattering for particles traveling through 4 cm LH2 + endcaps

Energy Loss in Target: Electrons

Multiple Scattering in Target: Electrons

5

Shielding Simulations: Pion decays:

 μ Momentum versus π decay angle

6

-5

Distance upstream of target (m) 7

-10

-15

30

20

10

-20

Muon can decay to larger angles, but with low momentum

Z origin of mu decays (right): a small number of μ decays also happen in the target or downstream

Pion Backgrounds:

Pion decays:

With no shielding, flooded with decays coming from far upstream Tracks won't point back to the target, but can lead to high accidentals rate

Pion Backgrounds:

Pion decays:

With no shielding, flooded with decays coming from far upstream Tracks won't point back to the target, but can lead to high accidentals rate

Shielding: 50 cm blocks readily available is more than enough to suppress upstream decays

Decay rate greatly reduced, e.g. for 153 MeV/c π +: 63 kHz \rightarrow 9 kHz

TABLE I. Table XII of the TDR.							
Beam Particle	Beam Momentum	Front Wall (Hz)		Back Wall (Hz)		Coincidence Rate	
	(MeV/c)	$1^{\rm st}$ bar	any bar	$1^{\rm st}$ bar	any bar	(Hz)	
π^+	115	12996	49468	13637	46797	29467	
	153	10920	30910	12637	33259	26446	
	210	7255	15739	10022	16778	14470	
π^{-}	115	12972	49336	13604	46787	29468	
	153	10958	30901	12683	33330	26483	
	210	7368	15913	10118	16921	14598	
μ^+	115	95	578	137	819	376	
	153	66	413	103	578	276	
	210	225	933	203	619	195	
μ^-	115	102	575	133	802	387	
	153	63	410	95	561	280	
	210	218	935	197	618	204	
e^+	115	1111	4891	794	1533	254	
	153	1133	5019	784	1552	260	
	210	1162	5148	828	1641	277	
e^-	115	1259	5371	918	1770	336	
	153	1262	5408	916	1760	324	
	210	1232	5389	904	1760	326	

Backgrounds Overview: Count rate in each wall per 1 MHz beam flux

Backgrounds Overview: Count rate in each wall per 1 MHz beam flux

TABLE I. Table XII of the TDR.

Pion rates: with beam flux estimates, up to ~100 kHz Reject with beam PID or track projection μ^+ μ^{-} e^+ e^{-}

Backgrounds Overview: Count rate in each wall per 1 MHz particle flux

TABLE I. Table XII of the TDR.

							Pion rates: with beam flux estimates, up to ~100 kHz
							Reject with beam PID or track projection
μ ⁺	115	95	578	137	819	376	
,	153	66	413	103	578	276	
	210	225	933	203	619	195	Decays, energy loss in
μ^-	115	102	575	133	802	387	target or air
	153	63	410	95	561	280	
	210	218	935	197	618	204	
e^+	115	1111	4891	794	1533	254	
	153	1133	5019	784	1552	260	
	210	1162	5148	828	1641	277	Møllers/Bhabha, energy
e^-	115	1259	5371	918	1770	336	loss in target or air
	153	1262	5408	916	1760	324	
	210	1232	5389	904	1760	326	

Backgrounds Overview: Count rate in each wall per 1 MHz particle flux

TABLE I. Table XII of the TDR.

				Pion rates: with beam flux estimates, up to ~100 kHz
				Reject with beam PID or track projection
	115	The equipoidence rates in terms	 276 ∐-	
<i></i>	153	of expected beam flux (per wall).	370 HZ 414 Hz	
	210	or expected beam hax (per wail).	123 Hz	Decays, energy loss in
μ^-	115		77 Hz	target or air
	153		140 Hz	
	210		102 Hz	
e^+	115		1524 Hz	_
	153		1144 Hz	
	210		205 Hz	Møllers/Bhabha, energy
e^-	115		2016 Hz	loss in target or air
	153		2592 Hz	
	210		1141 Hz	

e.g. Møller backgrouds:

~70-80% of electroninduced backgrounds pointing to target come from Møller scattering

(Note: scattering chamber not included)

Front Wall Moller Hits

e.g. Møller backgrouds:

~70-80% of electroninduced backgrounds pointing to target come from Møller scattering

(Note: scattering chamber not included)

Front Wall Moller Hits

e.g. Møller backgrouds:

~70-80% of electroninduced backgrounds pointing to target come from Møller scattering

(Note: scattering chamber not included)

Front Wall Moller Hits with Corresponding Back Wall Hit

e.g. Møller backgrouds:

→ compare front wall/back wall energy dep

Elastic electrons deposit more energy in back wall

Deposit Energy Correlation

Deposit Energy Correlation

Muon Backgrounds:

- → Decays can be suppressed with track reconstruction, unless the decay is within ~ +- 10 cm of the target
- \rightarrow 15% of the previously quoted pion rate comes from this region
- \rightarrow Decays in the target will have a slightly different RF time than elastic μp

Other low-energy Backgrounds:

→ More recent simulations have included GEM detectors, scattering chamber, and wire chambers
→ Can look at very rough "Reconstructed Z Vertex" plots

<u>Caveat</u>: very preliminary, designs of scattering chamber and shielding are in progress, backgrounds only in these plots (no elastics), **work in progress!**

Other low-energy Backgrounds:

 \rightarrow More recent simulations have included GEM detectors, scattering chamber, and wire chambers \rightarrow Can look at very rough "Reconstructed Z Vertex" plots

<u>Caveat</u>: very preliminary, designs of scattering chamber and shielding are in progress, backgrounds only in these plots (no elastics), **work in progress!**

Backgrounds summary:

- → Shielding simulations completed for studying concrete needs to remove upstream decays
- → Decays closer to the target can be removed through tracking
 → muon decays from the target
 - can be separated by RF time
- → Low-energy backgrounds from the target will deposit less energy in the back wall scintillators
- → Work is continuing to make the Geant4 simulation more realistic and study further shielding needs
 - \rightarrow shielding to side of GEMs
 - \rightarrow collimation after the GEMs
 - → lead bricks between GEMs
 - → optimizing the scattering chamber design

e.g. Møller backgrouds:

→ compare front wall/back wall energy dep

Pion Backgrounds:

Comment: Simulation not complete

Energy deposit in front wall:

```
→ peak ~ 8 MeV
```

→ low-energy tail

Z origin of front wall hits:

- → sharp peak at target
- → events which generate a large enough signal are primarily pion decays from upstream, will not point back to the target

Energy Deposit in Front Wall, 210 MeV/c π+

