A P-even <u>Time-R</u>eversal <u>I</u>nvariance Test at <u>C</u>OSY

<u>Outline</u>

- Defining the Goal.
- The Experimental Setup
- Final State Interaction
- Most Basic Error Analysis
- Some Experimental Details
- Summary

- (Most) accurately test TRI (T-odd, P-even) in nuclear matter
- Dynamics independent; especially: Not sensitive to Final State Interaction
- Only dependent on the structure of the reaction matrix as determined by general conservation laws "True test of TRI"
- Simple reaction (Two particles in \rightarrow two particles out)

True TRI Null-Test

A P-even <u>Time-Reversal Invariance Test at COSY</u> Defining the Goal

But:

There is no such TRI Null-Test for any reaction in atomic nuclear or elementary physics

F.Arash, M.J. Moravcsik and G.R. Goldstein, Phys.Rev.Lett. **54** (1985) 2649 M.Simonius, Phys. Lett. **B58** (1975) 147

Loophole: Proof holds for bilinear observables only.

H.E. Conzett, "7th Int. Conf. on "Pol. Phen. Nucl. Phys.", Paris (1990) 2D

A P-even <u>Time-Reversal Invariance Test at COSY</u> The Principle Idea of the Experimental Setup

The Principle of the Time Reversal Invariance test at COSY (TRIC)

A P-even <u>Time-R</u>eversal <u>Invariance</u> Test at <u>C</u>OSY Defining the Goal

W.C.Haxton. Antje Höring and M.J. Musolf, Phys.Rev. D50 (1994) 3422

A P-even <u>Time-R</u>eversal <u>Invariance Test at COSY</u> Defining the Goal

Experiment: $\vec{n} + {}^{165}\vec{H}_0$ From $A_5 = 8.6$ 7.7.10⁻⁶ gives: $\overline{g}_{\rho \chi} : 2.3 \pm 2.1.10^{-2}$ P.R. Huffmann et al., Phys.Rev. **C55** (1997) 2684

Sept. 10, 2013

A P-even <u>Time-Reversal Invariance Test at COSY</u> Defining the Goal

Theoretical bound on TRV by ρ exchange

M. Beyer, Nucl. Phys. A560 (1993) 895

A P-even <u>Time-Reversal Invariance Test at COSY</u> The Experimental Setup

External Fixed Target

Scattering-Cones and Detector-Sensitivity

Detector -Wall

A P-even <u>Time-R</u>eversal <u>I</u>nvariance Test at <u>C</u>OSY The Experimental Setup

A P-even <u>Time-Reversal Invariance Test at COSY</u> The Principle Idea of the Experimental Setup

The total pol. correlation $A_{y,xz}$ is measured via the forward scatt. amplitude $\mathcal{F}(0)$

F(0) - Forward scatt. amplitude for unpolarized particles

P - Density matrix

 $\mathcal{F}(0)$ - Forward scatt. amplitude (matrix) for polarized particles

A_{y, xz} is proportional to the relative difference of the current slopes of the circulating proton beam with respect to the chosen polarization configuration (+/-) of the proton beam and deuteron target.

time

A P-even <u>Time-R</u>eversal <u>Invariance</u> Test at <u>COSY</u> Final State Interaction

Concerning FSI: Reading the Optical Theorem carefully: $\frac{4\pi}{k} \operatorname{Im} F^{el}(0^{\circ}) = \sigma_{tot}^{el} + \sigma_{tot}^{inel}$

Has been proven by R.M. Ryndin

(proceeding of 3rd LNPI Winter School, *Test of T-invariance in strong interactions*), the idea of the proof can be found in: *V. Gudkov and Young-Ho Song, arXiv:1110.1279vl [nucl-th] 6Oct 2011*

Unitarity
$$\longrightarrow$$
 Optical Theorem \longrightarrow $F_i(0^\circ) = F_f(0^\circ) \longrightarrow$ Unitarity

A P-even <u>Time-Reversal Invariance Test at COSY</u> Final State Interaction

$$\frac{4\pi}{k} \operatorname{Im} F^{el}(0^{\circ}) = \sigma_{tot}^{el} + \sigma_{tot}^{inel}$$

For all inelastic processes the following conditions have to be fulfilled by the (FSI) scattered particles in order to be transported by COSY:

i) The e/m has to be that of a proton to 10⁻⁴
ii) The momentum p has to match to at least 10⁻⁴
iii) The scattering angle **v** must not exceed a few mrad

The phase space is considered to be virtually Zero

A P-even <u>Time-R</u>eversal <u>I</u>nvariance Test at <u>C</u>OSY Most Basic Error Analysis

Involved Spins: $\frac{1}{2} + 1 \rightarrow \frac{1}{2} + 1$

Line cancels because of :

Protonspinflip p_x, p_z negligible for protons

Quantity cancels because of :A,A

Sept. 10, 2013

D.Eversheim, PSI, PSI2013

A P-even <u>Time-Reversal Invariance Test at COSY</u>

Some Experimental Details

The error in the TRI sensitive observable A_{y,xz} depends on :

 The accuracy with which the current of circulating protons are measured
 The number of turns of the proton beam through the target

$$\Delta T_{y,xz} = \frac{T^{+} - T^{-}}{T^{+} + T^{-}} = \frac{\exp(-(\chi^{+}) - \exp(-(\chi^{-})))}{\exp(-(\chi^{+}) + \exp(-(\chi^{-})))}$$

 $\begin{array}{lll} \mbox{with:} & T^+ & -\mbox{Transmission factor for the proton-deuteron spin-configuration} \\ & \mbox{with } P_y \cdot P_{xz} > 0 \\ & T^- & -\mbox{Transmission factor for the time reversed situation, i.e.} \\ & P_y \cdot P_{xz} < 0 \\ & \chi^{+/-} & -\mbox{Is the product of the factors } (\sigma_{tot} \cdot \varrho d \cdot n) \mbox{ with respect to the} \\ & \mbox{ proton-deuteron spin-alignment} \end{array}$

$$\Delta T_{y,xz} = -\sigma_0 \varrho d \mathbf{n} P_y P_{xz} A_{y,xz} = :- \mathbf{S} A_{y,xz}$$

- with: S Is the sensitivity of the experiment with respect to $A_{y,xz}$
 - Number of turns the beam takes through the target

Sept. 10, 2013

n

A P-even <u>Time-Reversal Invariance Test at COSY</u>

Some Experimental Details

$$\delta A_{y,xz}^{\text{meas}} = \frac{8 \cdot 10^{-6}}{I_0 \sigma_0 \rho d \nu P_y P_{xz}} \frac{\sqrt{\Delta t}}{h\sqrt{H}} \delta I$$

$\begin{array}{ccc} & slope \mbox{ measurement [A]} \\ \sigma_0 & is the total unpolarized cross-section [cm2] \\ od & is the areal target density [atoms/cm2] \\ v & is the revolving frequency of the COSY beam [Hz] \\ P_y \mbox{ and } P_{xz} & are the polarizations of beam and target, respectively \\ \Delta t & is the time interval between two consecutive current \\ measurements on a slope [s] \\ \hline \end{array}$	with: I ₀	is the initial circulating proton current in COSY at the start of a
$ \begin{array}{ccc} \sigma_0 & \text{is the total unpolarized cross-section } [\text{cm}^2] \\ \text{od} & \text{is the areal target density } [\text{atoms/cm}^2] \\ \textbf{v} & \text{is the revolving frequency of the COSY beam } [\text{Hz}] \\ P_y \text{ and } P_{xz} & \text{are the polarizations of beam and target, respectively} \\ \Delta t & \text{is the time interval between two consecutive current} \\ & \text{measurements on a slope } [\text{s}] \\ \hline \end{array} $		slope measurement [A]
ϱd is the areal target density $[atoms/cm^2]$ ν is the revolving frequency of the COSY beam [Hz] P_y and P_{xz} are the polarizations of beam and target, respectively Δt is the time interval between two consecutive currentmeasurements on a slope $[s]$	σ_0	is the total unpolarized cross-section [cm ²]
v is the revolving frequency of the COSY beam [Hz] P_y and P_{xz} are the polarizations of beam and target, respectively Δt is the time interval between two consecutive currentmeasurements on a slope [s]	Qd	is the areal target density [atoms/cm ²]
$\begin{array}{ccc} P_{y} \mbox{ and } P_{xz} & \mbox{ are the polarizations of beam and target, respectively} \\ \Delta t & \mbox{ is the time interval between two consecutive current} \\ & \mbox{ measurements on a slope [s]} \end{array}$	ν	is the revolving frequency of the COSY beam [Hz]
Δt is the time interval between two consecutive current measurements on a slope [s]	P_{v} and P_{xz}	are the polarizations of beam and target, respectively
measurements on a slope [s]	Δt	is the time interval between two consecutive current
		measurements on a slope [s]
h is the spin flip period of the target [h]	h	is the spin flip period of the target [h]
H is the total measuring time [h]	Н	is the total measuring time [h]
δI is the error of the current measurement in the interval Δt [A]	δΙ	is the error of the current measurement in the interval Δt [A]

A P-even <u>Time-R</u>eversal <u>Invariance</u> Test at <u>COSY</u>

Some Experimental Details

When are these accuracies equal ? $\delta A_{y,xz}^{\text{meas}} = \delta A_{y,xz}^{\text{shot}}$

$$\mathbf{h}_{\min} = \frac{1.1 \cdot 10^{19}}{\nu^{3/2} \cdot \sqrt{\sigma_0 \ \rho d \ \mathbf{N}_0}} \cdot \frac{1}{\mathbf{P}_{\mathbf{y}} \mathbf{P}_{\mathbf{xz}}} \cdot \mathbf{\delta I}$$

Given:

H = 720 h (30 days)
h = 1/6 h

$$\sigma_0$$
 = 80 mb
 ρ_0 = 8.10¹³ atoms/cm² (PAX target with openable cell)
v = 8.10⁵ Hz (@ 135 MeV)
N₀ = 3.10⁹ protons
P_y, P_{xz} = 0.8
 Δt = 1 s

A P-even <u>T</u>ime-<u>R</u>eversal <u>I</u>nvariance Test at <u>C</u>OSY

Some Experimental Details

Beam time estimation

 $\Delta A_{y,x_0}$ 104 COSY BCT 10⁻⁵ NPCT Bergoz 10-6 107 CT Beraoz CCC GS ICT Bergoz/CRYRING 10⁻⁸ 1.5 2 0.5 1 2.5 з 3.5 P [GeV/c]

Five options for σ_{I} : 1) COSY BCT σ_{I} =0.5µA/ \sqrt{Hz} 2) NPCT Bergoz σ_{I} =0.3µA/ \sqrt{Hz} 3) CCC GSI σ_{I} =0.25nA/ \sqrt{Hz} 4) ICT Bergoz σ_{I} =1nA/ \sqrt{Hz} 5) ICT Bergoz σ_{I} =0.1nA/ \sqrt{Hz}

Precission after 30 days of beam-time

A P-even <u>T</u>ime-<u>R</u>eversal <u>I</u>nvariance Test at <u>C</u>OSY

Summary

- The TRIC experiment at COSY constitutes a T-odd, P-even True TRI Null-Test
- The TRIC experiment has the ability to probe the lower bound of a T-odd, P-even test of TRI as derived from n-EDM
- For the TRIC experiment COSY serves as accelerator, ideal foreward spectrometer and detector

"Go right to the frontiers of science and you will learn soon what is missing"

Georg Christoph Lichtenberg (1742-1799)

Thank You

