Light muonic atoms in search of new interactions at the Compton wavelength scale

Krzysztof Pachucki

Institute of Theoretical Physics, University of Warsaw

PSI Workshop, September 9, 2013
Proton charge radius puzzle

- global fit to H and D spectrum: $r_p = 0.8758(77) \text{ fm}$ (CODATA 2010)
- $e - p$ scattering: $r_p = 0.8791(79)$ (Bernauer, 2010)
- from muonic hydrogen: $r_p = 0.84089(39) \text{ fm}$ (PSI, 2010, 2012)

There is no any accepted explanation for this discrepancy, so far.
Proton charge radius puzzle

- Is it obvious that the Standard Model predicts the same \(e - p \) and \(\mu - p \) interaction at the 1fm scale?

- If \(e - p \) experiments and \(\mu H \) theory are correct, the plausible solution of this puzzle is the additional interaction at the 1 fm or the electron Compton wavelength scales.

How it can be verified?

Let us say few words about \(\mu H \) theory, why is it so reliable.
energy levels of μH

$E_L = 202.1$ meV

$E_{FS} = 8.4$ meV

$E_{HFS} (2S_{1/2}) = 22.7$ meV

$E_{HFS} (2P_{1/2}) = 8.0$ meV

$E_{HFS} (2P_{3/2}) = 3.4$ meV

$\Delta = 0.1$ meV
\(\mu H \) energy levels

- \(\mu H \) is essentially a nonrelativistic atomic system
- muon and proton are treated on the same footing
- \(m_\mu/m_e = 206.768 \Rightarrow \beta = m_e/(\mu \alpha) = 0.737 \) the ratio of the Bohr radius to the electron Compton wavelength
- the electron vacuum polarization dominates the Lamb shift in muonic hydrogen
Theory of μH energy levels

- nonrelativistic Hamiltonian $H_0 = \frac{p^2}{2 m_\mu} + \frac{p^2}{2 m_p} - \frac{\alpha}{r}$

- and the nonrelativistic energy $E_0 = -\frac{m_r \alpha^2}{2 n^2}$

- the evp dominates the Lamb shift

\[E_L = \int d^3 r \ V_{vp}(r) (\rho_{2P} - \rho_{2S}) = 205.0073 \text{ meV} \]

\[\text{without finite size} = 206.0336(5) \text{ meV} \]

- important corrections: second order, two-loop vacuum polarization, and the muon self-energy

- other corrections are much smaller than the discrepancy of 0.3 meV.
Breit-Pauli Hamiltonian

\[H_{BP} = H_0 + \delta H_{BP} \]

\[\delta H_{BP} = -\frac{p^4}{8 m_\mu^3} - \frac{p^4}{8 m_p^3} - \frac{\alpha}{2 m_\mu m_p} p^i \left(\frac{\delta_{ij}}{r} + \frac{r^i r^j}{r^3} \right) p^j \]

\[+ \frac{2 \pi \alpha}{3} \left(\langle r_p^2 \rangle + \frac{3}{4 m_\mu^2} + \frac{3}{4 m_p^2} \right) \delta^3(r) \]

\[+ \frac{2 \pi \alpha}{3 m_\mu m_p} g_\mu g_p \vec{s}_\mu \cdot \vec{s}_p \delta^3(r) - \frac{\alpha}{4 m_\mu m_p} g_\mu g_p \frac{s_\mu^i s_p^j}{r^3} \left(\delta_{ij} - 3 \frac{r^i r^j}{r^2} \right) \]

\[+ \frac{\alpha}{2 r^3} \vec{r} \times \vec{p} \left[\vec{s}_\mu \left(\frac{g_\mu}{m_\mu m_p} + \frac{(g_\mu - 1)}{m_\mu^2} \right) + \vec{s}_p \left(\frac{g_p}{m_\mu m_p} + \frac{(g_p - 1)}{m_p^2} \right) \right] \]
Leading relativistic correction

\[\delta_{\text{rel}} E_L = \langle 2P_{1/2} | \delta H_{BP} | 2P_{1/2} \rangle - \langle 2S_{1/2} | \delta H_{BP} | 2S_{1/2} \rangle = \frac{\alpha^4 m_r^3}{48 m_p^2} = 0.05747 \text{ meV} \]

- valid for an arbitrary mass ratio
- quite small and higher order relativistic corrections are negligible
Leading vacuum polarization

\[V_{vp}(r) = -\frac{Z \alpha}{r} \frac{\alpha}{\pi} \int_{4}^{\infty} \frac{d(q^2)}{q^2} e^{-m_e q r} u(q^2) \]

\[u(q^2) = \frac{1}{3} \sqrt{1 - \frac{4}{q^2}} \left(1 + \frac{2}{q^2} \right) \]

\[\delta_{vp} E_L = \langle 2P_{1/2} | V_{vp} | 2P_{1/2} \rangle - \langle 2S_{1/2} | V_{vp} | 2S_{1/2} \rangle = 205.0073 \text{ meV} \]

- the dominating part of the muonic hydrogen Lamb shift
- the expectation value is taken with nonrelativistic wave function
- the muon-proton mass ratio \(\eta \) is included exactly
Higher order vacuum polarization

- second order V_{vp}: $\delta E_L = 0.1509$ meV
- two-loop vp: $\delta E_L = 1.5081$ meV
- three-loop vp: $\delta E_L = 0.0053$ meV
- hadronic vp: $\delta E_L = 0.0112(4)$ meV

Muonic vp is included later together with the self-energy

Is there any further correction related to vp?
$\delta E_L = -0.0009$ meV

- significant cancellation between diagrams

- S.G. Karshenboim et al., arXiv:1005.4880
Small corrections

- relativistic correction to νp

\[
\delta_{\nu p, \text{rel}} E_L = \langle \delta_{\nu p} H_{BP} \rangle + 2 \langle V_{\nu p} \frac{1}{(E - H)'} H_{BP} \rangle
= 0.01876 \text{ meV}.
\]

If one used the Dirac equation in the infinite nuclear mass limit, the obtained result would be 0.021 meV.

- muon self-energy and muon νp: $\delta E_L = -0.6677 \text{ meV}$
- muon self-energy combined with evp: $\delta E_L = -0.0025 \text{ meV}$
- pure recoil corrections of order α^5: $\delta E_{LS} = -0.0450 \text{ meV}$
Summary of theoretical predictions

\[
\Delta E_{LS} = 206.0336(15) - 5.2275(10) r_p^2 + \Delta E_{TPE}
\]
\[
\Delta E_{FS} = 8.3521 \text{ meV}
\]
\[
\Delta E_{2S_{1/2}}^{HFS} = 22.8089(51) \text{ meV, (exp. value)}
\]
\[
\Delta E_{2P_{1/2}}^{HFS} = 7.9644 \text{ meV}
\]
\[
\Delta E_{2P_{3/2}}^{HFS} = 3.3926 \text{ meV}
\]
\[
\Delta = 0.1446 \text{ meV}
\]

where \(\Delta E_{TPE} = 0.0351(20) \text{ meV}\) is a proton structure dependent two-photon exchange contribution, on the next slide...
Nuclear structure effects

- if nuclear excitation energy is much larger than the atomic energy, the two-photon exchange scattering amplitude gives the dominating correction

- the total proton structure contribution $\delta E_L = 0.0351(20)$ meV is much too small to explain the discrepancy, but its calculation is not very certain [Carlson, Vanderhaeghen, 2011]
Lepton-proton interaction at the 1 fm scale

- Question: How to test universality of the lepton-proton interaction?
- Answer: compare $e - p$ with $\mu - p$ scattering: MUSE project, old $\mu - p$ Brookhaven scattering data (1969) are not conclusive
- Answer: μ^4He and μ^3He measurements, if discrepancy persists, is should be parametrized by

$$\delta E = (Z \delta r_p^2 + (A - Z) \delta r_n^2) \frac{2\delta l_0}{3 n^3} Z^3 \alpha^4 \mu^3$$

Determination of r_N from muonic atoms spectra requires an accurate calculation of the nuclear polarizability correction, not necessarily easy task (comments on recent calculations)
Lamb shift in μH

Fifth force at the Compton wavelength scale

- μH is very sensitive to the electron vacuum polarisation:
 for H
 \[
 \frac{E_{\text{discrepancy}}}{E_{\text{Uehling}}} = \frac{94 \text{ kHz}}{216,676 \text{ kHz}} = 0.00043
 \]
 for μH
 \[
 \frac{E_{\text{discrepancy}}}{E_{\text{Uehling}}} = \frac{0.31 \text{ meV}}{205.0073 \text{ meV}} = 0.0015
 \]
- This means that a small modification of V_{vp} may explain discrepancy as the change in μH is 4 times larger than in H.
- Are there any measurements sensitive to 5th force at the electron Compton wavelength?
fifth force: Salumbides, Ubachs, Korobov (2013)

-

\[
\begin{align*}
 &\text{dd}\mu^+ \\
 &\bar{p}^4\text{He}^+ \quad n=36\rightarrow 34 \\
 &\bar{p}^4\text{He}^+ \quad n=33\rightarrow 31 \\
 &\bar{p}^3\text{He}^+ \quad n=35\rightarrow 33 \\
 &\text{HD}^+ \\
\end{align*}
\]
rovibrational spectra are sensitive to the fifth force at the Compton wavelength down to 1fm

the strong interaction shift is negligible for higher rotational levels

one can determine the r-dependence

theoretical spectra can be obtained with the required accuracy