Muonic hydrogen spectroscopy

111 × 81×8:0

Randolf Pohl for the CREMA collaboration

CREMA collaboration 2013

Charge Radius Experiment with Muonic Atoms

F. Biraben, P. Indelicato, L. Julien, F. Nez	Labor. Kastler Brossel, Paris, France
M. Diepold, J. Götzfried, T.W. Hänsch, J. Krauth, F. Mulhauser, <u>R. Pohl</u>	MPQ, Garching, Germany
F.D. Amaro, J.M.R. Cardoso, L.M.P. Fernandes, A.L. Gouvea, J.A.M. Lopes, C.M.B. Monteiro, J.M.F. dos Santos	Uni Coimbra, Portugal
D.S. Covita, J.F.C.A. Veloso	Uni Aveiro, Portugal
M. Abdou Ahmed, T. Graf, A. Voss, B. Weichelt	IFSW, Uni Stuttgart, Germany
J. Alpstäg, A. Antognini, K. Kirch, <u>F. Kottmann</u> , K. Schuhmann, D. Taqqu	ETH Zürich, Switzerland
A. Dax, M. Hildebrandt	PSI, Switzerland
YW. Liu	Nat. Tsing Hua Uni, Hsinchu, Taiwan
J.P. Santos	Uni Lisbon, Portugal

The proton radius puzzle

The proton rms charge radius measured with electrons: 0.8770 ± 0.0045 fm muons: 0.8409 ± 0.0004 fm

The proton rms charge radius is not the most accurate quantity in the universe.

MPQ

The proton rms charge radius is not the most accurate quantity in the universe.

Randolf Pohl

The proton rms charge radius is not the most accurate quantity in the universe.

The proton rms charge radius is not the most accurate quantity in the universe.

Muonic hydrogen

Regular hydrogen:

electron e^- + proton p

Muonic hydrogen:

muon μ^- + proton p

muon mass $m_{\mu} \approx 200 \times m_e$ Bohr radius $r_{\mu} \approx 1/200 \times r_e$

 μ inside the proton: $200^3 \approx 10^7$

muon **much** is more sensitive to r_p

Proton charge radius and muonic hydrogen

A. Antognini, RP et al., Ann. Phys. 331, 127 (2013).

F=0

"prompt" ($t \sim 0$)

 μ^- stop in H₂ gas $\Rightarrow \mu p^*$ atoms formed ($n \sim 14$)

99%: cascade to μ p(1S), emitting prompt K_{α}, K_{β} ...

1%: long-lived μ p(2S) atoms lifetime $\tau_{2S} \approx 1 \,\mu$ s at 1 mbar H₂

R. Pohl et. al., Phys. Rev. Lett. 97, 193402 (2006).

"delayed" ($t \sim 1 \ \mu$ s)

fire laser ($\lambda pprox 6\,\mu$ m, $\Delta E pprox 0.2$ eV)

 \Rightarrow induce μ p(2S) \rightarrow μ p(2P)

 \Rightarrow observe delayed K_{α} x-rays

 $\Rightarrow \text{normalize } \frac{delayed \; K_{\alpha}}{\text{prompt } K_{\alpha}} \; \text{x-rays}$

time spectrum of 2 keV x-rays (\sim 13 hours of data @ 1 laser wavelength)

Randolf Pohl

Setup

Randolf Pohl

The resonance: discrepancy, sys., stat.

• Consider the two measurements separately

Two independent determinations of $r_{\rm p}$

 $(v_t
ightarrow r_{
m p}$, $v_s
ightarrow r_{
m p})$

Consistent results !!!

 $v_s = v(2S_{1/2}^{F=0} - 2P_{3/2}^{F=1})$ at $\lambda = 5.5 \ \mu {
m m}$

Both resonances are 0.3 meV away from predictions using r_p from CODATA

Results on muonic hydrogen

$v(2S_{1/2}^{F=1} \to 2P_{3/2}^{F=2})$	=	49881.88(76) GHz	R. Pohl et al., Nature 466, 213 (2010)
		49881.35(65) GHz) A Antognini RP et al
$v(2S_{1/2}^{F=0} \to 2P_{3/2}^{F=1})$	=	54611.16(1.05) GHz	Science 339, 417 (2013)
Proton charge radius:	r	, = 0.84087 (26) _{exp} (29)	_{th} = 0.84087 (39) fm

 μp theory summary:

A. Antognini, RP et al., Ann. Phys. 331, 127 (2013) [arXiv :1208.2637 (atom-ph)]

The Zemach radius

2S hyperfine splitting in μp is: $\Delta E_{HFS} = 22.8089(51) \text{ meV}$

gives a proton Zemach radius $R_Z = \int d^3r \int d^3r' r \rho_E(r) \rho_M(r-r')$

$$r_{\rm Z}$$
 = 1.082 (31)_{exp} (20)_{th} = 1.082 (37) fm

A. Antognini, RP et al., Science 339, 417 (2013).

Randolf Pohl

H/D isotope shift: $r_d^2 - r_p^2 = 3.82007(65) \text{ fm}^2$ C.G. Parthey, RP *et al.*, PRL **104**, 233001 (2010)

CODATA 2010 $r_d = 2.1424(21)$ fm

H/D isotope shift: $r_d^2 - r_p^2 = 3.82007(65) \, \text{fm}^2$ C.G. F

C.G. Parthey, RP et al., PRL 104, 233001 (2010)

CODATA 2010 $r_d = 2.1424(21)$ fm $r_p = 0.84087(39)$ fm from μ H gives $r_d = 2.12771(22)$ fm

H/D isotope shift: $r_d^2 - r_p^2 = 3.82007(65) \text{ fm}^2$ C.G. Parthey, RP *et al.*, PRL **104**, 233001 (2010)

CODATA 2010 $r_d = 2.1424(21)$ fm

 $r_{\rm p}$ = 0.84087(39) fm from μ H gives r_d = 2.12771(22) fm

Lamb shift in muonic DEUTERIUM

muonic deuterium

muonic deuterium

Muonic DEUTERIUM

2.5 resonances in muonic deuterium

- $\mu d [2S_{1/2}(F=3/2) \rightarrow 2P_{3/2}(F=5/2)]$ 20 ppm (stat., online)
- $\mu d [2S_{1/2}(F=1/2) \rightarrow 2P_{3/2}(F=3/2)]$ 45 ppm (stat., online)

• $\mu d \left[2S_{1/2}(\text{F=1/2}) \rightarrow 2P_{3/2}(\text{F=1/2}) \right]$

70 ppm (stat., online) only 5σ significant identifies F=3/2 line

MPO

Deuteron radius from μ d (**preliminary**)

- Three transitions frequencies measured in μd

 – 2P fine and hyperfine contributions from theory (no nucl. structure contributions) Borie, Martynenko \Rightarrow Fit Lamb shift and 2S-HFS

μd:
$$\Delta E_{LS}^{exp} = 202.8759(34) \text{ meV (prel.!)}$$

(μp: $\Delta E_{LS}^{exp} = 202.3706(23) \text{ meV}$)

 \rightarrow similar exp. uncertainty

Deuteron radius from μ d (**preliminary**)

			_				
- Three transitions frequencies measured in μ d				⇒F	Fit Lamb shift and 2S-HFS		
– 2P line	2P fine and hyperfine contributions from theory (no nucl. structure contributions))]				
		Bone, Martynenko		μ d:	$\Delta E_{\rm LS}^{\rm comp} = 202.875$	9(34) meV (prel.!)	
				(µp:	$\Delta E_{\rm LS}^{\rm exp} = 202.370$	6(23) meV)	
					ightarrow similar exp. u	ncertainty	
Theory	QED	fin. size	TP	E			
μ p: $\Delta E_{\text{LS}}^{\text{th}}$	= 206.0336(15)	- 5.2275(10) r_p^2	+ 0.03	332(20)	meV		
μ d: $\Delta E_{\rm LS}^{\rm th}$	= 228.7711(15)	- 6.1085(10) r _d ²	+ 1.68	300(160)) meV	Martynenko+Pachucki	
	= 228.7972(15)	- 6.1094(10) r _d ²	+ 1.68	300(160)) meV	Borie + Pachucki	
			+ 0.01	18 meV	relat. corr.	Ji <i>et al</i> . arXiv 1307.6577	
			+ 0.04	40 meV	neutron pol.	Friar, arXiv 1306.3269	
			+ 0.02	29 meV	nucleon fin.size	and Friar, priv. comm.	
μ d: $\Delta E_{\rm LS}^{\rm th}$	= 228.7711(15)	- 6.1085(10) r _d ²	+ 1.76	670(300)) meV	our choice	

Deuteron radius from μ d (**preliminary**)

- Three transitions frequencies measured in μd							
 – 2P fine and hyperfine contributions from theory (no nucl_structure contributions) 			$\langle \rangle$	\Rightarrow	Fit Lamb shift and 2S-HFS		
	Borie, Martynenko		') –	μd:	$\Delta E_{\rm LS}^{\rm exp} = 202.8759$	$\Delta E_{\rm LS}^{\rm exp} = 202.8759(34) \text{ meV (prel.!)}$	
				(µp:	$\Delta E_{\rm LS}^{\rm exp} = 202.3706$	5(23) meV)	
					ightarrow similar exp. ur	ncertainty	
Theory	QED	fin. size	TP	E		-	
$\mu p: \Delta E_{LS}^{th}$	= 206.0336(15)	- 5.2275(10) r_p^2	+ 0.03	332(20)	meV		
μ d: $\Delta E_{\rm LS}^{\rm th}$	= 228.7711(15)	- 6.1085(10) r _d ²	+ 1.68	300(160)) meV	Martynenko+Pachucki	
	= 228.7972(15)	- 6.1094(10) r _d ²	+ 1.68	300(160)) meV	Borie + Pachucki	
			+ 0.01	18 meV	relat. corr.	Ji et al. arXiv 1307.6577	
			+ 0.04	40 meV	neutron pol.	Friar, arXiv 1306.3269	
			+ 0.02	29 meV	nucleon fin.size	and Friar, priv. comm.	
μ d: $\Delta E_{\rm LS}^{\rm th}$	= 228.7711(15)	- 6.1085(10) r _d ²	+ 1.76	670(300)) meV	our choice	
- Pachucki, Ji et al., and Friar agree on the 2% level							
- Carlson, Gorchtein and Vanderhaegen: ongoing work using inelastic data and dispersion relations.							
- to do: polarizability contribution to HFS (determined by exp.!)							

Randolf Pohl

H/D isotope shift: $r_d^2 - r_p^2 = 3.82007(65) \, \text{fm}^2$ C.G. F

C.G. Parthey, RP et al., PRL 104, 233001 (2010)

CODATA 2010 $r_d = 2.1424(21)$ fm $r_p = 0.84087(39)$ fm from μ H gives $r_d = 2.12771(22)$ fm

Randolf Pohl

• μ H and μ D are **Consistent!**

(if BSM: no coupling to neutrons)

- WIP: deuteron polarizability (theory) complete? double-counting?
- exp.: shift from QM-interference

Randolf Pohl

The proton radius puzzle

J. Flowers, News & Views, Nature 466, 195 (2010)

The proton radius puzzle

"This could be the discovery of the century. Depending, of course, on how far down it goes."

Randolf Pohl

ECT* Workshop

"The Proton Radius Puzzle", Trento, Italy, Oct. 28 - Nov. 2, 2012

G.A. Miller, R. Gilman, RP

47 theorists + experimentalists

- atomic physics
- electron scattering
- nuclear physics
- Beyond SM

38 talks

- 3 "fighting sessions"
- \Rightarrow no solution

voting: more data needed

RP, R. Gilman, G.A. Miller, K. Pachucki, "Muonic hydrogen and the proton radius puzzle", Annu. Rev. Nucl. Part. Sci. (accepted)

(arXiv 1301.0905)

Randolf Pohl

Standard Model wrong?!?

RP, R. Gilman, G.A. Miller, K. Pachucki, "Muonic hydrogen and the proton radius puzzle", Annu. Rev. Nucl. Part. Sci. **63**, 175 (2013) (arXiv 1301.0905)

• Frequency mistake by 75 GHz ($\Leftrightarrow 0.15\%$)?

That is > 100 $\delta(\mu p)$! $\sigma_{tot} = 650 \text{ MHz}$, [570 MHz_{stat}, 300 MHz_{syst}] 4 line widths ! $\Gamma = 19 \text{ GHz}$ 2 resonances in μp give the same r_p

• Frequency mistake by 75 GHz ($\Leftrightarrow 0.15\%$)?

- Frequency mistake by 75 GHz ($\Leftrightarrow 0.15\%$)?
- Wrong transition?
- Systematic error?

Laser frequency (H ₂ 0 calibration)	300 MHz
intrinsic H ₂ O uncertainty	2 MHz
AC and DC stark shift	< 1 MHz
Zeeman shift (5 Tesla)	< 30 MHz
Doppler shift	< 1 MHz
Collisional shift	2 MHz
	300 MHz

 μp atom is small and not easily perturbed by external fields.

- Frequency mistake by 75 GHz ($\Leftrightarrow 0.15\%$)?
- Wrong transition?
- Systematic error?
- Molecular effects?

p μ *e* molecular ion? U.D. Jentschura, Annals of Physics 326, 516 (2011).

Does not exist! J.-P. Karr, L. Hilico, PRL 109, 103401 (2012).

Experimentally:

- only 1 line observed (> 80% population)
- expected width
- $pp\mu$ ion short-lived R. Pohl *et al.*, PRL 97, 193402 (2006).

- Frequency mistake by 75 GHz ($\Leftrightarrow 0.15\%$)?
- Wrong transition?
- Systematic error?
- Molecular effects?
- Gas imputities? Target gas contained 0.55(5) % air (leak). Back-of-the-envelope calculation: collision rate $\lambda \approx 6 \cdot 10^3 s^{-1}$ 2S lifetime $\tau(2S) = 1 \,\mu s$

 \Rightarrow Less than 1% of all $\mu p(\text{2S})$ atoms see any N_2

- Frequency mistake by 75 GHz ($\Leftrightarrow 0.15\%$)?
- Wrong transition?
- Systematic error?
- Molecular effects?
- Gas imputities?

μp experiment probably not wrong by 100 σ

75 GHz

Some contributions to the µp Lamb shift

Theory summary: A. Antognini, RP et al. Annals of Physics 331, 127 (2013)

Randolf Pohl

 μp theory wrong?

Discrepancy = 0.31 meV Theory uncert. = 0.0025 meV $\implies 120\delta$ (theory) deviation

double-checked by many groups

5th largest term!

Theory summary: A. Antognini, RP *et al.* Annals of Physics 331, 127 (2013) $\Delta E = 206.0668(25) - 5.2275(10) r_{\rm p}^2 \text{ [meV]}$

Some contributions to the µp Lamb shift

Randolf Pohl

$\mu \mathrm{p}$ theory probably not wrong by 100 σ

Discussions: 3rd Zemach moment

● PLB 693, 555 De Rujula: "*QED* is not endangered by the proton's size" (1008.3861)

A large third Zemach moment $\langle r_p^3 \rangle_{(2)} = \int d^3 r_1 d^3 r_2 \rho(r_1) \rho(r_2) |r_1 - r_2|^3$

of the proton can explain all three measurements: $\mu p,$ H, e-p

ho(r) is not a simple Dipole, but has "core" and "tail"

- PRC 83, 012201 Cloet, Miller: "Third Zemach moment of the proton" (1008.4345)
 Such a large third Zemach moment is impossible. $\langle r_p^3 \rangle_{(2)}$ (De Rujula) = 36.6 ± 6.9 fm³
 - $\langle r_p^3 \rangle_{(2)}$ (Sick) = $2.71 \pm 0.13 \, {\rm fm}^3$
- PLB 696, 343 Distler *et al*: "*The RMS radius of the proton and Zemach moments*" (1011.1861) $\langle r_p^3 \rangle_{(2)}$ (Mainz 2010) = 2.85 ± 0.08 fm³

Discussions: New Physics

- MPQ
- PRD 82, 125020 (2010) Jaeckel, Roy:
 "Spectroscopy as a test of Coulomb's law A probe of the hidden sector" (1008.3536) hidden photons, minicharged particles → deviations from Coulomb's law.
 µp transition can NOT be explained this. (contradicts Lamb shift in H)
- Ann. Phys. 326, 516 (2011) Jentschura: "Lamb shift in muonic hydrogen – II. Analysis of the discrepancy of theory and experiment" (1011.5453)

no millicharged particles, no unstable neutral vector boson

PRL 106, 153001 (2011) Barger, Chiang, Keung, Marfatia: "Proton size anomaly" (1011.3519)

decay of Υ , J/ ψ , π^0 , η , neutron scattering, muon g-2, μ^{24} Mg, μ^{28} Si

 \Rightarrow It's NOT a new flavor-conserving spin-0, 1 or 2 particle

PRD 83, 101702 (2011) Tucker-Smith, Yavin: "Muonic hydrogen and MeV forces" (1011.4922)

> MeV force carrier can explain discrepancies for r_p and $(g-2)_{\mu}$ IF coupling to *e*, *n* is suppressed relative to coupling to μ , *p* prediction for μ He⁺, $\mu^+\mu^-$

Discussions: New Physics

- PRL 107, 011803 (2011) Batell, McKeen, Pospelov:
 "New Parity-violating muonic forces and the proton charge radius" (1103.0721)
 10...100 MeV heavy photon ("light Higgs") can explain r_p and (g-2)_μ prediction for μHe⁺, enhanced PNC in muonic systems
- PRL 108, 081802 (2011) Barger, Chiang, Keung, Marfatia: "Constraint on Parity-violating muonic forces" (1109.6652)
 No missing mass events observed in leptonic Kaon decay.
 ⇒ contraints on light Higgs.
- PRD 86, 035013 (2012) C.E. Carlson, B.C. Rislow: "New physics and the proton radius problem" (1206.3587)

"New physics with fine-tuned couplings may be entertained as a possible explanation for the Lamb shift discrepancy."

Discussions: New Physics

 1303.4885 Wang, Ni: "Proton puzzle and large extra dimensions" Large Extra Dimensions

"Extra gravitational force between the proton and the muon at very short range provides an energy shift which accounts for the discrepancy..."

1303.5146 Li, Chen: "Can large extra dimensions solve the proton radius puzzle?" "We find that such effect could be produced by four or more large extra dimensions which are allowed by the current constraints from low energy physics."

Standard Model wrong?

Standard Model wrong?

MPQ

Lamb shift: $L_{1S}(r_p) = 8171.636(4) + 1.5645 \langle r_p^2 \rangle$ MHz

$$L_{nS} \simeq \frac{L_{1S}}{n^3}$$

2S ----- 2P

1S —

Lamb shift: $L_{1S}(r_p) = 8171.636(4) + 1.5645 \langle r_p^2 \rangle$ MHz

Lamb shift: $L_{1S}(r_p) = 8171.636(4) + 1.5645 \langle r_p^2 \rangle$ MHz

Rydberg constant from hydrogen

A. Beyer, C.G. Parthey, A. Matveev, J. Alnis, RP, N. Kolachevsky, Th. Udem and T.W. Hänsch

Apparatus used for H/D(1S-2S)

C.G. Parthey, RP *et al.*, PRL **104**, 233001 (2010) C.G. Parthey, RP *et al.*, PRL **107**, 203001 (2011)

- 486 nm at 90° + Retroreflector \Rightarrow Doppler-free 2S-4P excitation
- 1st oder Doppler vs. ac-Stark shift
- ~ 2.5 kHz accuracy (vs. 15 kHz Yale, 1995)
- cryogenic H beam, optical excitation to 2S

Summary

- Muonic hydrogen gives:
 - Proton charge radius: $r_p = 0.84087 (39)$ fm
 - Proton Zemach radius: $R_Z = 1.082 (37)$ fm
- We deduce:
 - Rydberg constant:

 $R_{\infty} = 3.2898419602495 \ (10)^{\text{radius}} \ (25)^{\text{QED}} \ \times 10^{15} \ \text{Hz/c}$

- Deuteron charge radius: $r_d = 2.12771(22)$ fm from μ H + H/D(1S-2S)
- muonic deuterium: $r_d = 2.1289(12)$ fm from μ D (PRELIMINARY!)
- Proton radius puzzle persists. New data needed!
 - 2S-4P in regular hydrogen: check R_{∞}
 - muonic helium: beam time Oct.-Dec. 2013
 - New low- Q^2 measurements on the proton
 - Mainz low- Q^2 measurement on the deuteron
 - MUSE (muon scattering experiment) @ PSI
 - **.**...

- CREMA collaboration: Charge Radius Experiment with Muonic Atoms
- Exp. R10-01 approved at PSI in Feb. 2010
- ERC Starting Grant #279765
- Goal: Measure $\Delta E(2S-2P)$ in μ^4 He, μ^3 He
- \Rightarrow alpha particle and helion charge radius to 3×10^{-4} (0.0005 fm)

- CREMA collaboration: Charge Radius Experiment with Muonic Atoms
- Exp. R10-01 approved at PSI in Feb. 2010
- ERC Starting Grant #279765
- Goal: Measure $\Delta E(2S-2P)$ in μ^4 He, μ^3 He
- ⇒ alpha particle and helion charge radius to 3×10^{-4} (0.0005 fm)

Randolf Pohl

- CREMA collaboration: Charge Radius Experiment with Muonic Atoms
- Exp. R10-01 approved at PSI in Feb. 2010
- ERC Starting Grant #279765
- Goal: Measure $\Delta E(2S-2P)$ in μ^4 He, μ^3 He
- \Rightarrow alpha particle and helion charge radius to 3×10^{-4} (0.0005 fm)
- aims:
 - help to solve the proton size puzzle
 - absolute charge radii of helion, alpha
 - Iow-energy effective nuclear models: ¹H, ²D, ³He, ⁴He
 - QED test with He⁺(1S-2S) [Udem @ MPQ, Eikema @ Amsterdam]

- CREMA collaboration: Charge Radius Experiment with Muonic Atoms
- Exp. R10-01 approved at PSI in Feb. 2010
- ERC Starting Grant #279765
- Goal: Measure $\Delta E(2S-2P)$ in μ^4 He, μ^3 He
- \Rightarrow alpha particle and helion charge radius to 3×10^{-4} (0.0005 fm)
- aims:
 - help to solve the proton size puzzle
 - absolute charge radii of helion, alpha
 - Iow-energy effective nuclear models: ¹H, ²D, ³He, ⁴He
 - QED test with He⁺(1S-2S) [Udem @ MPQ, Eikema @ Amsterdam]
- ⁴He beam time: Oct. Dec. 2013
- ³He beam time: 1st half of 2014

Proton Size Investigators thank you for your attention

