Paul Scherrer Institut
Tilman Rohe
Silicon Tracking Detectors in High Energy Particle Physics
Innermost part of most HEP Experiments are the tracking systems

- Outer parts for **momentum** measurement
- Inner parts for **vertexing**, and (if pixels are used) for track seeding

Most vertex detectors are based on **silicon**

- Suitable properties (signal, carrier life time, can be doped …)
- Low Z (material budget)
- Good availability in high quality, sufficiently cheap
- Well know processing technology (on principle)

Competitors

- Compound semi conductors: Not sufficiently radiation hard (high Z attractive for X-ray detection)
- Diamond: Expensive, not easily available (esp. single crystal) but very attractive features → R&D ongoing
Principle of most tracking devices

- A particle (or a photon) **ionizes** the detection medium
- The charge carriers are separated by an **E-field**
- Their drift induces charge on the collection electrodes
- If collection electrons are segmented, a spatial information is obtained
- Ionization energy needed for electron–ion separation
 - Argon: ~26 eV
 - Silicon: 3.6 eV

“Ohmic” detector

- Assume a piece of silicon: area 1cm² thickness 0.3mm
- Charge released from a m.i.p.: ~25000 e⁻ ~ 4fC
- Mobility (electrons): ~1400cm²/Vs, targeted collection time: 10ns
- **Signal** current I = 4 fC/10ns = **400 nA** (easy to detect)
- To achieve 10ns collection time an electric field of
 \[E = \frac{v}{m} = 0.03 \text{cm}/10\text{ns}/1400\text{cm}^2/\text{Vs} \approx 2100 \text{ V/cm} \]
 or a **bias of 60V**

But:

- Silicon is a semiconductor
 - Highest practical resistivity: 10kΩcm → 300Ω (our piece)
 - Current at 60V: **200mA**
 - For very small cells (pixels) A~10⁻⁴cm⁻² good S/N possible but overall power consumption prohibitive (12W/cm²)
 - Large band gap materials (diamond) work in this regime
- For “high” temperature Silicon: **suppress leakage current → pn-junction**
A diode is formed by an interface between p- and n-doped silicon:

- Majority carriers diffuse to the other side
 \[J_{\text{diff}} = -D_n \nabla n \quad \text{or} \quad J_{\text{diff}} = D_p \nabla p \]
 with \(D = kT \mu e \) (Einstein relation)
- Recombine with “local” majority carriers → zone with reduced concentration of free carriers (depletion zone)
- Remaining acceptor/donor ions cause electric field
 \[J_{\text{drift}} = -e n \mu_n E \quad \text{or} \quad J_{\text{drift}} = e p \mu_p E \]
- Both currents cancel each other → relation field vs. position
- Forward bias → exponential IV curve
- Reverse bias
 - Depletion zone is increased
 - Current is suppressed (only thermal generation)
- In case one side of the junction is much heavier doped than the other and the junction is abrupt:
 - \(W = \sqrt{2\varepsilon_0 \varepsilon_{\text{Si}} V/eN_D} \) → depends only on bulk doping
 - Constant bulk doping → linear field
• Dark current by thermal generation of e-h-pairs in the space charge region (volume)
 • Effected by defects in the crystal
 • Heavily increased by radiation
 • Exponential Temperature dependence
 \[J_{\text{vol}} \sim T^2 \exp(-E_g/2kT) \] or factor 2 every 8K

Other sources of leakage current
• Thermal generation at interfaces/surfaces
 • Segmentation
 • Process quality
 • Radiation
 • Charge multiplication (break down)
Strip detector (DC-coupled)

Simplest way to create diodes

- Implant Boron over a photoresist pattern into high resistive n-type silicon
- Electrodes typically have the shape of strips are connected to the read out electronics by wire bonding

Features:

- \(W = \sqrt{2\varepsilon_0\varepsilon_{Si}V/eN_D} \) \(\rightarrow \) depends only on bulk doping
- Full depletion for \(300\mu m \) and \(n=10^{12}cm^{-2} \) \(\sim 70V \)
- Constant bulk doping \(\rightarrow \) linear field
- Strip implant forms junction \(\rightarrow \) peak at strip
- High dose implant on back side (ohmic contact, break down)
1st strip trackers

Left: 1st strip tracker at FNAL-E706 (around 1980)
- Signals were still routed to crates using flat band cables

Top: CERN WA82 (1986)
- Signal amplifiers built with discrete components

Due to the bulky readout electronics only used in fixed target experiments
ASIC readout → Collider experiments (LEP, HERA)
HERA - CST

- Designed and built at PSI (1992-96)
- Read out with ASIC (apc128)
 - Readout electronics placed in small hybrids
 - 128 channels 50µm pitch
 - Digital controlled analogue signal processing
 - Very universal (e.g. now used for telescope)
Double sided read out
- N-side isolation
- Ground of electronics (one side on HV)
 - Readout via optical fibers
 - Control signals coupled in via capacitors
- Luminosity at HERA was small
 - 3 sensors daisy chained
 - 90 degree stereo angle
 - Double layer metal on n-side
 → Large capacitance → high noise

Insulation layer
Sensor bulk

via

p+ strip side
n+ strip side
n-bulk
p+
Al

p+ - strip readout

n+ - strip readout

particle hits
d fake combinations !
AC-coupled strip detector

- **Bias resistor and coupling capacitor** are difficult to implement on an ASIC
- Implementation on sensor is possible
 - **Capacitor: SiO2 layer**
 - Due to large strip size, a few 100nm thick layer possible
 - Can be very stable up to 100V
 - Long **poly resistor** (R > 1MΩ)
- **Yield of capacitor is cost driving**
 - Every capacitor/strip has to be tested
 - Yield can be improved by applying a sandwich layer of Si₃N₄
Pioneering in 2 respects

- 1st "large area" application: several m²
- 1st strip sensors which suffered substantial radiation induced degradation

Sensor choice: **Double sided AC coupled** sensors, both readout electronics on GND:

- Voltage drop over coupling capacitor
- Limit of max. bias to 170V

Solution: Insertion of "layer00":
- Single sided, stable > 600V
The requirements to CMS tracker

- **Intermediate and outer regions \((r>20\text{cm})\)**
 - “Moderate” radiation hardness required
 - Can be archived with “standard” sensors
- **Small stereo angle**
 - Less ambiguities
 - No double metal required to mount ASICs at “stave” end
- **Loss in z-resolution**
- **Very large area \((\sim 200\text{m}^2)\) → cost**
 - Single sided p-on-n sensors
 - Double sided → 2 sensors back-to-back
 - Large wafers (150mm instead of 100mm)
- **Inner region \((r<20\text{cm})\)**
 - High track density
 - No ambiguities
 - Zero suppression and local data storage
 - **Radiation induced degradation** (sensor and ROC)

→ Pixels
• **Surface damage**
 – Mainly by ionisation in the covering layers
 – Built up of positive surface charge
 – Danger of breakdown close to n-side electrodes
 → careful choice of n-side isolation

• **Crystal damage by displacement**
 • Leakage current increase proportional to Φ
 $\Phi \sim ?? \ (\text{depending much on } T)$
 – power load (cooling), power
 – Preamplifier (if DC coupled)
 • Change of internal electric field
 $\Phi > \text{a few } 10^{14} \text{ Neq/cm}^2$ ($\int L > \sim 100/\text{fb}$)
 – Bias voltage has to be
 – Charge is focused \rightarrow spatial resolution degrades
 • Reduced signal (trapping)
 $\Phi > \sim 10^{15} \text{ Neq/cm}^2$ ($\int L > \sim 250/\text{fb}$):
 – Possibly charge amplification $> 1\text{kV} \rightarrow \text{RD50}$
 – High voltage is presently limited by connectors, cables and power supplies

```
36824 vacancies
```

```
4145 vacancies
```

```
8870 vacancies
```

[Mika Huhtinen NIMA 491(2002) 194]
Leakage current

Leakage current was measured with a very large number of small diodes with the guard current separated

- **Volume current only**
- Segmented sensors might be different

Result

- Current density is proportional to the Fluence
- Damage constant $\alpha = \Delta I / (V \Phi_{eq})$ independent of
 - Kind of particle
 - Fluence
 - Growth method of the crystal
 - Impurities of the crystal
 \rightarrow NIEL hypothesis correct for I_{leak}
- Leakage current of diodes is used for fluence calibration or as measurement of κ
- Annealing
Internal electric field

- Highest electric field moves from p-side to n-side ("type inversion")
- Double peak field builds up
- Total amount of space charge increases
 - **Minimum bias voltage increases**
- Depends on
 - material choice
 - kind of radiation (even compensating effects with proton/neutron irradiation)
- Effective doping ("average") described by Hamburg model (creation and anning)

![Graph showing electric field distribution and doping levels]

- [ROSE-Report]
Trapping

Charge trapping displays presently the absolute operational limit

- Not dependent on material properties (present status)
- Decreases anti proportional to fluence
- Presently measured only up to $10^{15}N_{eq}/cm^2$
- Holes and electron have about same inverse trapping time
- Annealing is different for electrons and holes
- Electrons are $3 \times$ more mobile, their collection is of advantage (\rightarrow n-in-n/p sensors)
- Collection distance after $10^{15}N_{eq}/cm^2 \sim 200\mu m$

Data for holes
Data for electrons

Inverse trapping time $1/\tau$ [ns$^{-1}$]

Particle fluence Φ_{eq} [cm$^{-2}$]

Annealing time at 60°C [min]

24 GeV/c proton irradiation

$\Phi_{eq} = 4.5 \times 10^{14}$ cm$^{-2}$

[M.Moll; Data: O.Krasel, PhD thesis 2004, Uni Dortmund]

T. Rohe, PSI, 12.09.2013
CMS pixel sensor concept

Collect electrons (n-side readout)
- Less prone to trapping
- Larger Lorentz angle
- n-side isolation required

Avoid problems in module design
- N-Substrate
- Guard rings (and junction) on back side
- All sensor edges on ground potential
- Double sided processing

Pixel cell layout
- Moderated p-spray with bias grid
 - Reliable IV measurements prior to flip chip procedure
 - Only moderate over depletion necessary
 - Small partly insensitive area of the order of 2% (not effect on efficiency in CMS)
- Small gaps between implants
 - homogenous drift field
 - Minimize effect of field separation on charge sharing
 - Avoid flied peaks (high voltage capability in irradiated state)
 - higher C ~ 80fF (Not critical for performance)
Excursion: N-side isolation

Fixed oxide charge
- Creates a conducting channel between n-electrodes
- Determines the electrical field in the critical area close to the surface
- Technology parameters (dose of the isolation implant has to be adjusted)

P-Stops (FPix)
- High boron dose (adjustment uncritical)
- Alignment important
- (Breakdown after irradiation if dose is too high)

P-Spray, mod. p-Spray (BPix)
- HV-stability of un-irradiated device critical
- Boron dose to be adjusted
 - High enough to provide isolation
 - Low enough to enable HV operation of new devices (e.g. during module production)
- Narrow gaps possible (without moderation)
 - Punch through structures
 - Homogenous drift field at high voltages
Different pixel designs in 2003

<table>
<thead>
<tr>
<th>Design</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sintef (Ring)</td>
<td>- Only 1 un-irradiated (measured at 300V)</td>
</tr>
<tr>
<td>CiS (Ring)</td>
<td>- 1 un-irradiated (measured at 300V)</td>
</tr>
<tr>
<td></td>
<td>- Each 1 irradiated to 3 and 8×10^{14} measured between 100 and 600V</td>
</tr>
<tr>
<td>CiS (Spray)</td>
<td>- 3 unirrad (Gap 20,15 & 30)</td>
</tr>
<tr>
<td></td>
<td>- 2 (gap 20) irradiated to 8 and 11×10^{14} measured between 100 and 600V</td>
</tr>
<tr>
<td>CiS (Cross)</td>
<td>- 1 un-irradiated</td>
</tr>
<tr>
<td></td>
<td>- 1 irradiated to 8×10^{14} (bad bump-yield)</td>
</tr>
</tbody>
</table>

After many test beam and lab measurements we decided for the p-spray design.
• Use special test structure which “imitates” the biasing structure
• Applied 0.6V (~0.5 * V_{ana})
• Measured the current as function of the back side voltage
 – Some over depletion needed to separate bias grid from pixels
 – No dramatic change with radiation
• Chosen gap of 7 µm
Collect electrons (n-side readout)
- Less prone to trapping
- Larger Lorentz angle
- n-side isolation required

Avoid problems in module design
- N-Substrate
- Guard rings (and junction) on back side
- All sensor edges on ground potential
- Double sided processing

Pixel cell layout
- Moderated p-spray with bias grid
 - Reliable IV measurements prior to flip chip procedure
 - Only moderate over depletion necessary
 - Small partly insensitive area of the order of 2% (not effect on efficiency in CMS)
- Small gaps between implants
 - Homogenous drift field
 - Minimize effect of field separation on charge sharing
 - Avoid flied peaks (high voltage capability in irradiated state)
 - Higher C ~ 80fF (Not critical for performance)
Excursion 2: guard rings

Prevent
- Edge breakdown by gently reducing the potential between diode and edge
- Current injection by preventing the space charge region from reaching the edge

![Diagram of guard rings showing depletion zones and charge injection](image-url)
Collect electrons (n-side readout)
- Less prone to trapping
- Larger Lorentz angle
- n-side isolation required

Avoid problems in module design
- N-Substrate
- Guard rings (and junction) on back side
- All sensor edges on ground potential
- Double sided processing

Pixel cell layout
- Moderated p-spray with bias grid
 - Reliable IV measurements prior to flip chip procedure
 - Only moderate over depletion necessary
 - Small partly insensitive area of the order of 2% (not effect on efficiency in CMS)
- Small gaps between implants
 - Homogenous drift field
 - Minimize effect of field separation on charge sharing
 - Avoid field peaks (high voltage capability in irradiated state)
 - Higher $C \sim 80\text{fF}$ (Not critical for performance)
Bare module

Pixel Sensor with UBM & Indium balls

16 tested CMOS ROC chips with UBM & Indium

Bump bonded “raw module”
Half shell of the detector
Insertion in CMS

Barrel Pixel Detector

Pixel Installation
CMS
- Performance fully satisfactory
- Radiation level is still low but above the point of space charge sign ("type") inversion

Radiation hardness studies
- Up to $\sim 1.2 \times 10^{15} N_{eq}/cm^2$:
 - Several test beam studies in the years 2002-06
 - Including tilt angle, B-field, and threshold
 - Summarized in NIM A 583 (2008) 25-41
- Higher fluences up to $\sim 3 \times 10^{15} N_{eq}/cm^2$
 - Source tests. Dac settings and trimming procedure not 100% settled
- Fluences up to $\sim 5 \times 10^{15} N_{eq}/cm^2$
 - ATLAS IBL (same sensor concept and vendor)

Signal height and detection efficiency fully sufficient for the targeted radiation level of $1.5 \times 10^{15} N_{eq}/cm^2$ ($\sim 250fb^{-1}$ in layer 1 at 3cm)

Increase of bias voltage increase the live time
Value in $r\phi$: ~9 μm

- Cluster size in $r\phi$-direction ~ 2
 - Lorentz angle presently about 22°
 - High mobility of electrons
 - “Small-gap” implant geometry
Perpendicular to the beam axis

- Lorentz angle is reduced by higher bias voltage
- Process is slow and steady
- Well understood and measured since many years
- No way to prevent this
- Better focusing of charge onto one channel leads to better detection efficiency
New detector:
- Very low η (cluster length: 1): $\sim 150\mu$m \times $\sqrt{12}$ $\sim 40\mu$m
- “optimum” (cluster length 2): best interpolation possible ~ 15-20μm
- Larger η (cluster length >2): Interpolation more difficult. Fluctuations in the centre of the cluster do not contain information.
- Reach in average $\sim 28\mu$m (overlap studies)

In irradiated sensor:
- Shape of cluster has to be taken into account “template algorithm”)
- If fluence is too high/signal too low:
 - level is low (pitch is smaller than thickness)
 - fluctuations might lead to “hole” in the clusters
 - present software cannot “glue” to clusters together
 - large errors in position determination
- Smaller pitch makes things worse

Need
- lower threshold (digital ROC will reach below 2000e)
- powerful software tools to “reconnect” broken cluster, which is difficult in multi track environment inside jets
Outlook

Needs of LHC-experiments are fulfilled by sensors presently available:

- Large areas: p-in-n strips
- Vertexing: n-in-n pixel

Future projects (e.g. LHC upgrade 2) require

- “Outer” layers: improved radiation hardness at same price level → n-in-p sensors
 - High resistive p-material available
 - Same level of radiation hardness as present pixels
 - Might profit from mixed radiation environment (π/n) in the outer tracker regions
- Pixel layers
 - Level of $\sim 5 \times 10^{15} N_{eq}/cm^2$ or above achieved with present technologies
 - Should consider radiation hardness of read out electronics
 - Easily exchangeable “standard” detector might be the cheapest solution

Other candidate technologies

- 3D sensors
 - Reduce drift distance
 - Proven to deliver high signal at $10^{16} N_{eq}/cm^2$
 - Not attractive for small pixel size (dead area, capacitance)
- Diamond
 - Used in beam monitors at ATLAS, CMS, GSI
 - Polarization effects to be understood
 - Availability of single crystals
Linear Colliders

Here an extremely thin tracker is required
- Very thin
- Little power (air cooling)

One prototype: BELLE II Vertex Detector
- 2 layers at radii = 1.4, 2.2 cm
- Based on DEPFET principle
 - Sensor can store charge
 - 1st amplification on sensor
 - Also used for X-ray astronomy
- Monolithic sensor thickness 75μm
- Pixel size ~50 x 50 μm²
- Rolling shutter mode, 100nsec → S/N=17/1

Final device 75μm thick → X/X₀ = 0.18% !!
(self supporting, no extra mechanics in sensitive region)
Silicon sensors are an interesting and active field

- Requirements to sensors are very different depending on the experiment
- Up to now all requirements were met
- Development is ongoing with high speed