# Investigation of the work function fluctuations for high precision experiments

<u>C. Schmidt</u>, M.Beck, W. Heil, A. Wunderle Johannes Gutenberg-University Mainz



KATRIN rear section group Karlsruher Institut für Technologie

# Why?

In high precision experiments the electric potentials have to be known precisely! *a*SPECT 10 mV | KATRIN 20 mV Electrodes, defining the potentials for charged particles, can show spatial fluctuations of the work function up to several 100 mV!

#### Systematic investigations

#### **Observation of the patch effect**

#### Electroplating

... leads to areas with different crystal orientations of Au. The work function depends on the crystal orientation. This

| orientation        | phi /eV      |
|--------------------|--------------|
| Au(100)            | 5.31         |
| Au(110)            | 5.41         |
| Au(111)            | 5.47         |
| Au(110)<br>Au(111) | 5.41<br>5.47 |

E.g. the crystal orientations of gold lead to 160 mV pk-pk difference!

## What's the problem?

Spatial work function fluctuations  $\Phi(\vec{x})$  corresponds to local Fermi levels  $E_F(\vec{x})$ . Due to balancing of electrically connected Fermi levels, there will be a shift of the vacuum level by the **contact potential difference** 

 $\phi_{\rm CPD} = \Phi(\vec{x}_f) - \Phi(\vec{x}_i)$ 



Effect of spatial work function fluctuations.

A charged particle moving from  $\vec{x}_i$  to  $\vec{x}_f$  and thus  $E_{\mathrm{F},i}$  to  $E_{\mathrm{F},f}$ . Balancing of the Fermi levels lead to an electric field, which shifts the final kinetic energy by  $q\phi_{\mathrm{CPD}}$ . In experiments utilizing an electrostatic filter like *a*SPECT and KATRIN (MAC-E type), this effect has to be taken into account.



### How to measure? - Kelvin probe!

#### **Simplified Kelvin probe circuit**





#### Temporal stability of Au(111) on sapphire

... shows that the inital RMS fluctuation "out of box" can be nearly recovered by a vacuum cleaning procedure or/and a bake out.



## **Conclusion and Outlook**

Studied and commissioned a scanning Kelvin probe system
 Now stable at 3 meV<sub>RMS</sub>

#### Samples being investigated

Au electroplated on copper (aSPECT)
Au(111) epitaxially grown on sapphire
Au sputtered on silicium/beryllium, ...





 Electroplated samples >cm<sup>2</sup> are patched, thus show high meV<sub>RMS</sub>, e.g. Au on silicon showed fluctuations down to 4.5 meV<sub>RMS</sub>
 Further investigations:

Measure filter electrode and decay volume electrode used in aSPECT beamtime 2013 as input for simulations!

- Measure under beamtime conditions:
  - Influence of adsorbed layers on fluctuations
    Influence of cryogenic temperature
    - Therefore a UHV Kelvin probe will be commissioned!

The Mainz Kelvin probe is a reliable system to investigate work function fluctuations, which can cause systematic errors in your experiment! Check and ask for support! Christian Schmidt, chschmidt@uni-mainz.de

www.ag-heil.uni-mainz.de