Muon Capture on the Deuteron The MuSun Experiment

$$\mu^- + d \to n + n + \nu$$

Measure the capture rate, Λ_{d} , to 1.5% precision

Michael Murray

PSI2013, Fundamental Symmetries and Interactions

$$\mu^- d \to n + n + \nu_\mu$$

 μd atom can form in doublet or quartet hyperfine state

Muon Capture

$$\mu^- + d \to n + n + \nu$$

The single-nucleon system is parameterized with form factors:

$$J_d^{\alpha} = \bar{\psi}_n (g_V \gamma^{\alpha} + \frac{ig_M}{2m_N} \sigma^{\alpha\beta} q_\beta - g_A \gamma^{\alpha} \gamma_5 - \frac{g_P}{m_\mu} q^{\alpha} \gamma^5) \psi_p$$

The 2-nucleon system is calculated using effective field theory, leaving a low-energy constant to be determined empirically.

μ

hunn

$$L_{1A}$$
 d_R

Neutrinos & Astrophysics

Connection to the SNO reactions $\nu + d \rightarrow p + n + \nu$

$$\nu_e + d \to p + p + e^-$$

as well as p-p fusion

$$p + p \to d + e^+ + \nu_e$$

through the LEC d_R (or L_{1A})

Theory/Experiment status

Lifetime Method

Positive muon disappearance rate

$$\Lambda_{\mu^+} = \Lambda_{\text{decay}}$$

Muon lifetime is known to 1ppm

Negative muon disappearance rate

$$\Lambda_{\mu} = \Lambda_{\text{decay}} + \Lambda_{\alpha}$$

<u>Measure</u> the negative muon lifetime in deuterium

6

$$\mu^{+} \rightarrow e^{+} + \nu_{e} + \bar{\nu}_{\mu}$$

$$\mu^{-} \rightarrow e^{-} + \bar{\nu}_{e} + \nu_{\mu}$$

$$\mu^{-} d \rightarrow n + n + \nu_{\mu}$$

$$\Lambda_{d} = \Lambda_{\mu} - \Lambda_{\mu+}$$
Reminder:
$$\Lambda_{d} \sim 400 \text{ s}^{-1}$$

$$\Lambda_{\mu+} \sim \Lambda_{\mu-} \sim 455,000 \text{ s}^{-1}$$
time

Muons in Deuterium

Optimize Target Conditions

Gas density must be 5% of liquid H_2 density

Experimental Challenges

- Statistics: 10 ppm requires 10^{10} decays $\Lambda_{d} \sim 400 \text{ s}^{-1}$, $\Lambda_{\mu^{+}} \sim 455,000 \text{ s}^{-1}$
- Muonic atoms must be in the doublet (F=1/2) state
- Chemical Purity: < 1ppb O₂, N₂
 - Capture rate goes as Z⁴
 - Continuous cleaning and circulation CHUPS
- Isotopic purity: ¹H concentration < 100 ppm
- Muon-catalyzed fusion backgrounds in the TPC

Measuring the Lifetime

1: Beam scintillator registers muon time, t

2: TPC provides 3D stopping position of the muon in D_2

3: Scintillator registers decay electron time, t_e

4: Histogram $t_e - t_u$ and fit to an exponential to extract Λ_u

4
$$N(t_e - t_\mu) = N_0 \text{Exp}[-\Lambda_{\mu^-}(t_e - t_\mu)]$$

Detectors

e,

PiE1 Muon Beam at PSI

PiE1 muon Beam at PSI

CryoTPC tracking

Analysis of 2011 data

5 x 10⁹ muon decays in Summer 2011

Chemical impurity

- Muons will transfer preferentially to nitrogen and oxygen impurities.
- The μZ atoms can undergo capture
 - $\mu N \rightarrow C^* + nu$
 - $\mu O \rightarrow N^* + nu$
- Capture rate goes as Z⁴
- The effect on the lifetime is $\sim 2s^{-1}$ / ppb
- Gas chromatography monitor not sufficient
- Can we observe capture recoils in TPC?

Chemical impurity

- Muons will transfer preferentiand oxygen impurities.
- The µZ atoms can undergo ca

$$- \mu N \rightarrow C^* + nu$$

$$-\mu O \rightarrow N^* + nu$$

- Capture rate goes as Z⁴
- The effect on the lifetime is ~²⁴
- Gas chromatography monitor not sufficient
- Can we observe capture recoils in TPC?

Impurity measurement with TPC

Background reduction:

- Higher resolution TPC readout
- Tag X-rays from muonic atom formation

Background reduction

High resolution cold pre-amplifiers

Energy (keV)

20

Summary

- Analysis of the 2011 run data is ongoing
- Test run and upgrade development 2012
- Currently running in the PiE1 beamline through November 2013 with upgrades to handle the most troubling systematics
- Further data collection in 2014 (TBD)

backup slides

Electron interference

- Electrons ionization is small, below threshold
- Still possible to "promote" muons barely below threshold

Phase diagram

- Experiment operates at T=34K, P=6 bar, ϕ =6%LHD
- We've explored the D2 phase diagram a little.
- 31 50 K
- 4 9 bar
- 5 11% density

Stops in other materials

- Capture rate, ΛZ ~ Z^4
- High Z captures quickly start fit later
- Very low Z has small capture rate small effect
- Medium-Z is the worst (eg. Si, Al, Cr, Cu)

Muon kinetics

