Probing sub-eV particles with polarized ³He Grenøble at the Institut Laue-Langevin

Mathieu Guigue¹, David Jullien², Alexander K. Petukhov², Guillaume Pignol¹, Dominique Rebreyend¹ 1 LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Grenoble INP. 2 Institut Laue-Langevin, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9, France

Theoretical motivations

• Theories beyond the Standard Model predict new light scalar bosons →Axions and Axion-like particles →WISP: candidate to Dark Matter →New short range monopole-dipole interaction potential *V* which occurs as a pseudo-magnetic field

 $\Gamma_1 = \Gamma_{1w} + \Gamma_{1dd} + \Gamma_{me} + \Gamma_{mi} + \Gamma_{NF}$

Contact : guigue@lpsc.in2p3.fr

The apparatus

• Improvements:

 $1\gamma_5 g_p$

 $m_{\phi}c$

 ϕ_A

- Magnetic shield: gradients decreased by factor 30
- Solenoid: a more homogeneous B_0 magnetic field _

Cell

Principle of the measurement

• Measure a polarized Helium 3 cell longitudinal relaxation rate Γ_1 dependence with the holding magnetic field B_0 •Search for an exotic contribution due to pseudo-magnetic field

Collisions with walls Collisions with dipoles

Exotic contribution External Holding field magnetic field inhomogeneities inhomogeneities

- Behaviour of contributions:
 - Constant with $B_0: \Gamma_{1w}, \Gamma_{1dd}, \Gamma_{mi}$
 - Behave as B_0^{-2} : Γ_{me}
 - Γ_{NF} behaviour is very different from the other contributions ¹:

µ-metal magnetic shield

solenoid

•*Measurement* of Γ_1 :

Due to high polarization, the ³He cell generates a magnetic field B_s (proportional to polarization) which can be measured with a three-axis fluxgate magnetometer.

 $\Gamma_{NF} = \frac{\hbar^2 N^2}{8m_n^2 DR} \frac{\lambda^5 (g_s g_p)^2 (1 - e^{-d/\lambda})^2}{(1 + \phi_\lambda^2)^2} \left(\sqrt{\frac{2}{\phi_\lambda}} (1 - \phi_\lambda (2 - \phi_\lambda)) + (\phi_\lambda^2 - 3) \right)$

- $\phi_{\lambda} = \frac{\gamma B_0 \lambda^2}{D}$
- γ is the gyromagnetic ratio of ³He
- *D* is the diffusion coefficient
- *N* is the nucleon density of the cell walls and *d* their thickness
- m_n is the mass of a nucleon
- *R* is the radius of the cell
- In 2010 experiment ², the limiting factors were: •Environmental magnetic inhomogeneities •Depolarization due to the walls •Holding magnetic field *B*⁰ inhomogeneities

- \rightarrow Evaluation of Γ_1 with magnetic field exponential decrease with time: $B_s \propto \exp{-\Gamma_1 t}$

Expected constraints

1. M. Guigue, G. Pignol, Article in preparation 2. A. K. Petukhov, G. Pignol, D. Jullien, and K. H. Andersen, Physical Review Letters **105**, 170401 (2010)