Measurement of Electric Dipole Moments in Storage Rings

J. Pretz RWTH Aachen/ FZ Jülich on behalf of JEDI collaboration

PSI2013, September 2013

Outline

Introduction:

Motivation for charged particle Electric Dipole Momemt (EDM) measurements

Method:

EDM measurements in Storage Rings

First test measurements:
 Spin Coherence time, spin tune

Introduction

\mathcal{CP} violation and EDMs

 $\Rightarrow \text{EDM measurement tests violation of fundamental symmetries } \mathcal{P} \text{ and } \mathcal{T}(\stackrel{\mathcal{CPT}}{=} \mathcal{CP})$

EDI

Motivation: matter–anti-matter asymmetry, CP violation

- We are surrounded by matter (and not anti-matter) $\eta = \frac{n_B - n_{\bar{B}}}{n_{\gamma}} = \mathbf{6} \times \mathbf{10}^{-10}$
- In 1967 Sakharov formulated three prerequisites for baryogenesis. One of these is the combined violation of the charge and parity, CP, symmetry.
- Starting from equal amount of matter and anti-matter at the Big Bang, from \mathcal{CP} -violation in Standard Model we expect only 10^{-18}
- New CP violating sources outside the realm of the SM are clearly needed to explain this discrepancy of eight orders of magnitude.
- They could manifest in EDMs of elementary particles

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

6/50

no EDM observed yet, only limits

no EDM observed yet, only limits

no measurement for deuteron (or heavier nuclei),

JEDI

8/50

- no EDM observed yet, only limits
- no measurement for deuteron (or heavier nuclei),
- no direct measurement for proton

- no EDM observed yet, only limits
- no measurement for deuteron (or heavier nuclei),
- no direct measurement for proton
- Standard Model value essentially 0

- no EDM observed yet, only limits
- no measurement for deuteron (or heavier nuclei),
- no direct measurement for proton
- Standard Model value essentially 0
- Beyond SM values accessible by experiments.

charged particle EDM measurements less precise

- charged particle EDM measurements less precise
- To measure EDMs one needs large electric fields. Charged particles are accelerated in electric fields

GOAL of JEDI (Jülich Electric Dipole Investigations)collaboration: Charged Hadron EDM measurements

- First measurement of deuteron, ³He EDM,
- first direct measurement of proton EDM

ultimately with a precision of $10^{-29}e$ cm

14/50

ヘロン ヘ通 と ヘヨン ヘヨン

Sources of \mathcal{CP} violation

Sources of \mathcal{CP} violation

 \Rightarrow It is mandatory to measure EDM of many different particles to disentangle various sources of CP violation.

Difficulty of charged particle EDM measurement

- EDM of neutral particles can be measured in small volumes (trap)
- applying an electric field on a charged particle accelerates the particles
 - \Rightarrow particle cannot be kept in small volume
 - \Rightarrow storage rings have to be operated to measure EDM of charged particles
- already done for muon (parallel to g 2 measurement)
 μ: 0.1 ± 0.9 · 10⁻¹⁹ e·cm

Method: How to measure charged particle EDMs?

Measurement of charged particle EDMs Generic Idea:

For **all** edm experiments (neutron, proton, atom, ...): Interaction of \vec{d} with electric field \vec{E} For charged particles: apply electric field in a storage ring:

Wait for build-up of vertical polarization $s_\perp \propto |d|$, then determine s_\perp using polarimeter

In general:

$$rac{\mathrm{d}ec{s}}{\mathrm{d}t}=ec{\Omega} imesec{s},\quadec{s}||ec{d}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Spin Motion is governed by Thomas-BMT equation (Bargmann, Michel, Telegdi)

$$rac{\mathrm{d}ec{s}}{\mathrm{d}t} = ec{\Omega} imes ec{s}$$

 $ec{\Omega} = rac{e\hbar}{mc} [Gec{B} + \left(G - rac{1}{\gamma^2 - 1}
ight) ec{v} imes ec{E} + rac{1}{2} \eta (ec{E} + ec{v} imes ec{B})]$

$$ec{d}=\etarac{e\hbar}{2mc}ec{S},\quadec{\mu}=2(G+1)rac{e\hbar}{2m}ec{S},\quad G=rac{g-2}{2},$$

- \vec{d} : electric dipole moment $\vec{\mu}$: magnetic moment, g:g-factor, G: anomalous magnetic moment
- γ : Lorentz factor

V. Bargmann, L. Michel and V. L. Telegdi, Phys. Rev. Lett. 2 (1959) 435.

$$ec{\Omega} = rac{e\hbar}{mc} [Gec{B} + \left(G - rac{1}{\gamma^2 - 1}
ight)ec{v} imes ec{E} + rac{1}{2}\eta(ec{E} + ec{v} imes ec{B})]$$

Several Options: try to get rid terms $\propto G \Rightarrow$ frozen spin $\eta \approx 10^{-14}$ for $d = 10^{-29} e \cdot cm$:

$$\vec{\Omega} = \frac{e\hbar}{mc} [G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\vec{v} \times \vec{E} + \frac{1}{2}\eta(\vec{E} + \vec{v} \times \vec{B})]$$

Several Options: try to get rid terms $\propto G \Rightarrow$ frozen spin $\eta \approx 10^{-14}$ for $d = 10^{-29} e \cdot cm$:

• Pure electric ring with $\left(G - \frac{1}{\gamma^2 - 1}\right) = 0$, works only for G > 0

$$ec{\Omega} = rac{e\hbar}{mc} [Gec{B} + \left(G - rac{1}{\gamma^2 - 1}
ight)ec{v} imes ec{E} + rac{1}{2}\eta(ec{E} + ec{v} imes ec{B})]$$

Several Options: try to get rid terms $\propto G \Rightarrow$ frozen spin $\eta \approx 10^{-14}$ for $d = 10^{-29} e \cdot cm$:

Pure electric ring

with $\left(G-rac{1}{\gamma^2-1}
ight)=0$, works only for G>0

2 Combined \vec{E}/\vec{B} ring $G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\vec{v} \times \vec{E} = 0$

$$ec{\Omega} = rac{e\hbar}{mc} [Gec{B} + \left(G - rac{1}{\gamma^2 - 1}
ight) ec{v} imes ec{E} + rac{1}{2}\eta(ec{E} + ec{v} imes ec{B})]$$

Several Options: try to get rid terms $\propto G \Rightarrow$ frozen spin $\eta \approx 10^{-14}$ for $d = 10^{-29} e \cdot cm$:

Pure electric ring

with
$$\left(G-rac{1}{\gamma^2-1}
ight)=0$$
 , works only for $G>0$

2 Combined \vec{E}/\vec{B} ring $G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\vec{v} \times \vec{E} = 0$

Pure magnetic ring

Required field strength

	$G=rac{g-2}{2}$	<i>p</i> /GeV/c	<i>E_R/MV/m</i>	B_V/T
proton	1.79	0.701	10	0
deuteron	-0.14	1.0	-4	0.16
³ He	-4.18	1.285	17	-0.05

Ring radius \approx 40m Smaller ring size possible if $B_V \neq 0$ for proton $E = \frac{GBc\beta\gamma^2}{1 + G\beta^2\gamma^2}$

Figure 3: An all-electric storage ring lattice for measuring the electric dipole moment of the proton. Except for having longer straight sections and separated beam channels, the all-in-one lattice of Fig. 1 spatterned after this lattice. Quadrupole and sextupole families, and tunes and lattice functions of the allin-one lattice of Fig. 1 will be quite close to those given for this lattice in reference[3]. The match will be even closer with magnetic field set to zero for proton operation.

Brookhaven National Laboratory (BNL) Proposal

2. Combined \vec{E}/\vec{B} ring

Figure 1: "All-In-One" lattice for measuring EDM's of protons, deuterons, and helions.

JEDI

27/50

Under discussion at Forschungszentrum Jülich (design: R. Talman)

Main advantage:

Experiment can be performed at the existing (upgraded) COSY (COoler SYnchrotron) in Jülich on a shorter time scale!

COSY provides (polarized) protons and deuterons with $p = 0.3 - 3.7 \text{GeV}/c \Rightarrow$ Ideal starting point

$$ec{\Omega} = rac{e\hbar}{mc} \left(G ec{B} + rac{1}{2} \eta ec{v} imes ec{B}
ight)$$

Problem:

Due to precession caused by magnetic moment, 50% of time longitudinal polarization component is || to momentum, 50% of the time it is anti-||.

$$ec{\Omega} = rac{e\hbar}{mc} \left(G ec{B} + rac{1}{2} \eta ec{v} imes ec{B}
ight)$$

Problem:

Due to precession caused by magnetic moment, 50% of time longitudinal polarization component is || to momentum, 50% of the time it is anti-||.

 E^* field in the particle rest frame tilts spin due to EDM up and down \Rightarrow **no net EDM effect**

$$ec{\Omega} = rac{e\hbar}{mc} \left(G ec{B} + rac{1}{2} \eta ec{v} imes ec{B}
ight)$$

Problem:

Due to precession caused by magnetic moment, 50% of time longitudinal polarization component is || to momentum, 50% of the time it is anti-||.

 E^* field in the particle rest frame tilts spin due to EDM up and down \Rightarrow **no net EDM effect**

Use resonant "magic Wien-Filter" in ring $(\vec{E} + \vec{v} \times \vec{B} = 0)$:

 $E^* = 0 \rightarrow \text{part.}$ trajectory is not affected but

 $B^{*} \neq 0 \rightarrow$ mag. mom. is influenced

 \Rightarrow net EDM effect can be observed!

Horizontal spin motion $\propto G$

vertical spin motion $s_\perp \propto d$

Summary of different options

	\bigcirc	
1.) pure electric ring (BNL)	no \vec{B} field needed	works only for p
2.) combined ring (Jülich)	works for $p, d, {}^{3}\text{He}, \dots$	both <i>Ē</i> and <i>B</i> required
 pure magnetic ring (Jülich) 	existing (upgraded) COSY ring can be used , shorter time scale	lower sensitivity

Statistical Sensitivity (pure electric or combined ring) $\sigma \approx \frac{\hbar}{\sqrt{NfT\tau_p}PEA}$

Ε	electric field	10 MV/m
Ρ	beam polarization	0.8
Α	analyzing power	0.6
Ν	nb. of stored particles/cycle	4×10^{10}
f	detection efficiency	0.005
$ au_p$	spin coherence time	1000 s
Т	running time per year	10 ⁷ s

 $\Rightarrow \sigma \approx 10^{-29} e \cdot cm/year$ Expected signal \approx 3nrad/s (for $d = 10^{-29} e \cdot cm$) (BNL proposal)

Statistical Sensitivity pure magnetic ring (COSY)

$$\sigma \approx \frac{\hbar}{2} \frac{G\gamma^2}{G+1} \frac{U}{E \cdot L} \frac{1}{\sqrt{NfT\tau_p}PA}$$

G	anomalous magnetic moment	
γ	relativistic factor	1.13
	p = 1 GeV/c	
U	circumference of COSY	180 m
E·L	integrated electric field	$0.1\cdot 10^6 \; V$
Ν	nb. of stored particles/cycle	$2\cdot 10^9$

 $\Rightarrow \sigma \approx 10^{-25} e \cdot cm/year$

(ロト・合ト・ミト・ミト ミークへの 35/50

Systematics

One major source: Radial *B* field mimics an EDM effect:

- Difficulty: even small radial magnetic field, *B_r* can mimic EDM effect if :μ*B_r* ≈ *dE_r*
- Suppose $d = 10^{-29} e cm$ in a field of E = 10 MV/m

• This corresponds to a magnetic field:

$$B_r = \frac{dE_r}{\mu_N} = \frac{10^{-22} eV}{3.1 \cdot 10^{-8} eV/T} \approx 3 \cdot 10^{-17} T$$

(Earth Magnetic field $\approx 5 \cdot 10^{-5} T$)

Solution: Use two beams running clockwise and counter clockwise, separation of the two beams is sensitive to B_r (3 · 10⁻¹⁰T/s)

Electrostatic Deflectors

- Electrostatic deflectors from Fermilab (\pm 125kV at 5 cm $\hat{=}$ 5MV/m)
- large-grain Nb at plate separation of a few cm yields \approx 20MV/m

Wien filter

Conventional design R. Gebel, S. Mey (FZ Jülich)

stripline design D. Hölscher, J. Slim (IHF RWTH Aachen)

Polarimeter

Principle: Particles hit a target: Left/Right asymmetry gives information on EDM Up/Down asymmetry gives information on MDM

Polarimeter

Cross Section & Analyzing Power for deuterons

First test measurements: Spin Coherence Time (SCT), spin tune

Spin Coherence Time (SCT)

Short Spin Coherence Time

Spin Coherence Time (SCT)

JEDI

Spin tune measurements

Spin tune: $\nu = \gamma G$, number of spin revolution with respect to the momentum vector per particle turn

In our case ($p_d = 1 \text{ GeV}/c$, $\gamma = 1.13$, G = -0.14256177(72))

 $\Rightarrow \nu = \gamma G = -0.161$

Can be determined by measuring the horizontal polarization of beam

44/50

Spin tune measurements

Slope equals $\nu = \gamma G$

<ロ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

JEDI

Spin tune measurements

- We are sensitive to spin tune changes of the order of 10^{-9} in a single cycle (≈ 100 s)
- reason for varying spin tune is still under investigation
- powerful to keep spin aligned with momentum vector (vital for frozen spin method)

< ロ > < 同 > < 回 > < 回 >

JEDI Collaboration

- JEDI = Jülich Electric Dipole Moment Investigations
- \approx 80 members

(Aachen, Dubna, Ferrara, Ithaca, Jülich, Krakow, Michigan, St. Petersburg, Minsk, Novosibirsk, Stockholm, Tbilisi, ...)

• \approx 10 PhD students

Storage Ring EDM Efforts

Summary

Summary

- EDM of charged particles can be measured in storage rings
- EDMs of elementary particles are of high interest to disentangle various sources of CP violation searched for to explain matter - antimatter asymmetry in the Universe

- Experimentally very challenging because effect is tiny
- Efforts at Brookhaven and Jülich to perform such measurements