# UNIVERSITY VIRGINIA

SDD scheme

## Digital pulse processing of proton detector signals in the spectrometer *a*SPECT



<u>R. Virot<sup>1</sup></u>, S. Baeßler<sup>2</sup>, M. Beck<sup>3</sup>, J. Erhart<sup>4</sup>, F. Glück<sup>5</sup>, W. Heil<sup>3</sup>, C. Klauser<sup>1</sup>, G. Konrad<sup>4</sup>, R. Maisonobe<sup>1</sup>, C. Schmidt<sup>3</sup>, M. Simson<sup>1</sup>, T. Soldner<sup>1</sup>, A. Wunderle<sup>3</sup>, O. Zimmer<sup>1</sup> <sup>1</sup>Institut Laue-Langevin, Grenoble, France ; <sup>2</sup>Physics Department, University of Virginia, Charlottesville, USA ; <sup>3</sup>Institut für Physik, Universität Mainz, Germany ; <sup>4</sup>Institute of Atomic and Subatomic Physics, TU Wien, Austria ; <sup>5</sup>IEKP, Universität Karlsruhe, Germany

## The aSPECT experiment

- Dedicated to the measurement of the electronantineutrino angular correlation coefficient a
- *a* allows to test the Standard Model through the value of  $\lambda = g_A/g_V$
- The value of *a* can be extracted from the proton recoil spectrum

field strips

→ -V →

n- silicon

back contact



#### $\rightarrow$ Greatly reduced thermal noise compared to a conventional PIN diode

from cables

energy electrons, on both trigger conditions and energy calculation

## **Comparison of 2 used DAQs**



can be determined using a fit (in red)

## **Online behavior of the two systems**

 $4.0 \,\mu s + 0.2 \,\mu s$ 

#### **Proton peak position stability**

 $4.0 \,\mu s + 0.06 \,\mu s$ 

• Because of the analog components of the shaper, the pulse shaping is very sensitive to temperature

• A stabilized and cooled compressed air flow constantly blows on the shaper to reduce temperature effects

- The input signal is still dependent of analog devices (detector and preamp.) and thus to temperature, but this effect is small
- The energy is calculated through a digital filter: this process has a great reproducibility and no temperature dependency

minus the baseline value



Baseline

**Rise time** 

Fall time



• No evidence of energy miscalculation, whatever the baseline value is



## Evolution of the proton peak position over a 23 h acquisition



### **Behavior after high-energy electrons**

• Shift on the calculated energy for events coming shortly after an high-energy electron

• This effect is most certainly due to an

| Spectra depending on events time difference with<br>previous high-energy electron |  |                  |  |  |  |
|-----------------------------------------------------------------------------------|--|------------------|--|--|--|
| לפת                                                                               |  | Time difference: |  |  |  |



• No alteration of the trigger efficiency above the noise at low pulse-height (Pulse-height > 30 ADC channels): the three normalized spectrums have the same distribution

overcompensation of a very sensitive parameter of the shaper





• Also no alteration of the trigger efficiency above the noise at low pulse-height (Energy > 35 a.u.)

## Conclusion

- Over the last years, a lot of improvements were done on the shaper + 12 bit ADC setup. As a result this system performs globally well
- There are however a few imperfections left. Those are mainly due to the analog nature of the shaper

• The recent availability of high resolution and high sampling frequency flash ADC allowed us to test a 14 bit ADC without the need of an analog shaper

- This full digital treatment offers a great reproducibility and thus a very stable acquisition system
- The few left imperfections of the shaper + 12 bit ADC setup are no longer present with this solution