The Radon-EDM Program

Funding: DOE

- 1. Brief motivation
- 2. Atomic EDMs
- 3. Octupole enhancements
- 4. Prospects

$EDM \leftrightarrow QP \leftrightarrow Baryon Asymmetry \leftrightarrow NEW PHYSICS$

1) Baryon number violation

 $\vec{d} = d\hat{J}$

2) CP Violation

3) Rapid expansion (non-equilibrium)

Another possibility: CP violation in neutrinos + "seesaw"

Tim Chupp, Univeristy of Michigan Radon Prospects for PSI2013

Atomic EDMs

Particle Interactions Polarize Atoms

$d_{A} = (k_{T}C_{T} + k_{S}C_{S}) + \eta_{e}d_{e} + \kappa_{S}S + h.o. (MQM)$

Tim Chupp, Univeristy of Michigan Radon Prospects for PSI2013

Atomic EDMs

Particle Interactions Polarize Atoms

13 Effective field-theory parameters See Engel et al. arXiv:1303.2371 8 experiments (so far)

What can we learn?

Diagmagetic atoms and nucleons

T.C. & M. Ramsey-Musolf - in preparation

	θ_{QCD}	d_n^{0}	d_n^{1}	C _T	g_{π}^{0}	g_{π}^{-1}	
neutron	X	1	-1				
Xe, Hg, TlF	X			Х	Х	X	Schiff
Ra, Rn	X			X	X	x	Moment
proton	X	1	+1				
d, ³ H, ³ He	X				X	X	

$$S = g_{\pi NN} (a_0 \bar{g}_{CP}^0 + a_1 \bar{g}_{CP}^1 + a_2 \bar{g}_{CP}^2)$$

...
$$d_n \approx \bar{d}_n + (1.44 \times 10^{-14} g_{\pi}^{(0)} - 8.3 \times 10^{-16} g_{\pi}^{(1)}) \text{ e-cm}$$

$$\bar{g}_{CP}^0 \approx 0.027 \ \theta_{QCD}$$

gpi1

Tim Chupp, Univeristy of Michigan Radon Prospects for PSI2013

Octupole Enhancements Intrinsic (body-frame) moment Polarizabitliy

Nuclei with Octupole Deformation/Vibration

(Haxton & Henley; Auerbach, Flambaum, Spevak; Engel et al., Hayes & Friar, etc.)

$$S \propto \frac{\left< + \left| \eta r^2 \cos \theta \right| - \right>}{E_+ - E_-} \approx \frac{\eta \beta_2 \beta_3^2 A^{2/3} r_0^3}{E_+ - E_-} \qquad = \underbrace{ \prod_{+}^{+} \prod$$

	223 Rn	²²³ Ra	225 Ra	²²³ Fr	¹²⁹ Xe	¹⁹⁹ Hg
t _{1/2}	$23.2 \mathrm{m}$	$11.4 { m d}$	$14.9 \mathrm{~d}$	$22 \mathrm{m}$		
Ι	7/2	3/2	1/2	3/2	1/2	1/2
ΔE th (keV)	37*	170	47	75		
$\Delta E \exp (\text{keV})$	(-)	50.2	55.2	160.5		
$10^{11}S$ (e-fm ³)	375	150	115	185	0.6	-0.75
$10^{28} d_A \text{ (e-cm)}$	1250	1250	940	1050	0.3	2.1
$\eta_{qq} = 3.75 \times 10^{-4}$					86 Rn 218	226

Ref: Dzuba PRA66, 012111 (2002) - Uncertainties of 50% as *Based on Woods-Saxon Potential

† Nilsson Potential Prediction is 137 keV

NOTES: Ocutpole Enhancements Engel et al. agree with Flambaum et al. Even octupole vibrations enhance S (Engel, Flambaum& Zelevinsky)

Measurement of Deformation Parameters of Rn, Ra Liam Gaffney et al. (Nature v 407, p 199, 2013)

Tim Chupp, Univeristy of Michigan Radon Prospects for PSI2013

Estimate of ²²¹Rn Enhancement

Tim Chupp, Univeristy of Michigan Radon Prospects for PSI2013

Measurement Principle

Need to measure B (co)magnetometry

Techniques: Collecting rare isotope noble gases

Polarization and relaxation of radon

E. R. Tardiff,¹ J. A. Behr,³ T. E. Chupp,¹ K. Gulyuz,⁴ R. S. Lefferts,⁴ W. Lorenzon,² S. R. Nuss-Warren,¹ M. R. Pearson,³ N. Pietralla,⁴ G. Rainovski,⁴ J. F. Sell,⁴ and G. D. Sprouse⁴

¹FOCUS Center, University of Michigan Physics Department, 450 Church St., Ann Arbor 48109-1040, USA ²University of Michigan Physics Department, 450 Church St., Ann Arbor 48109-1040, USA ³TRIUMF, 4004 Westbrook Mall, Vancouver V6T 2A3, Canada ⁴SUNY Stony Brook Department of Physics and Astronomy, Stony Brook 11794-3800, USA (Dated: December 6, 2006)

Nuclear Orientation of Radon Isotopes by Spin-Exchange Optical Pumping

M. Kitano, ^(a) F. P. Calaprice, M. L. Pitt, J. Clayhold, W. Happer, M. Kadar-Kallen, and M. Musolf G. Ulm^(b) and K. Wendt^(c) T. Chupp J. Bonn, R. Neugart, and E. Otten H. T. Duong

E_{γ} (keV)	Spin sequence	Anisotropy R	R = 1 (%)
337	$(\frac{1}{2}^{-}) - (\frac{5}{2}^{-})$	0.903(14)	-9.7 ± 1.4
408	$(\frac{5}{2}^{-}) - \frac{9}{2}^{-}$	1.009(7)	$+0.9 \pm 0.7$
689	$\frac{5}{2}$, $\frac{7}{2}$ - $\frac{5}{2}$ -	1.079(22)	$+7.9 \pm 2.2$
745	$(\frac{7}{2}) - \frac{9}{2}$	1.129(14)	$+12.9 \pm 1.4$

Tim Chupp, Univeristy of Michigan Radon Prospects for PSI2013

Genat-4 simulations by Evan Rand γ -ray energy-time matrix from the β decay of 1.2 billion 223 Rn nuclei from an initial 8×10^{10} nuclei located in the EDM cell surrounded by a ring of eight GRIFFIN detectors in the forward position.

Known Level Structure of ²²³Fr

- Nuclear Data Sheets (2001)

Other detection techniques

- Beta asymmetry
- 2-photon laser magnetometry developed for ¹²⁹Xe/nEDM

Two-photon magnetometry with $^{221/223}$ Rn (J=7/2) S. Degenkolb Two-photon allowed

excited states $(\Delta m = 2)$

Radon-EDM Prospects

Compare to ¹⁹⁹Hg: d<3x10⁻²⁹ e-cm (90%)

Facility	TRIUMF-ISAC	FRIB(²²³ Th)	Project X
Rate	2.5x10 ⁷ s ⁻¹	1x10 ⁹ s ⁻¹	3x10 ¹⁰ s ⁻¹
# atoms	3.5×10^{10}	1.4×10^{12}	4.2×10^{13}
$\sigma_{\rm EDM}$ (100 d)	2x10 ⁻²⁷ e-cm	3x10 ⁻²⁸ e-cm	5x10 ⁻²⁹ e-cm
¹⁹⁹ Hg equivalent	4x10 ^{-28/29} e-cm	6x10 ^{-29/30} e-cm	1x10 ^{-30/31} e-cm A future?

Assumptions: E=10 kV/cm, T_2 =15 s, A=0.2, 25% duty factor

$$\sigma_d \approx \frac{1}{2E} \frac{\hbar}{AT_2} \frac{1}{\sqrt{N_{\gamma}}}$$

Tim Chupp, Univeristy of Michigan Radon Prospects for PSI2013

9/10/13

Tim Chupp, Univeristy of Michigan Radon Prospects for PSI2013

Elements of the EDM measurement

Need	Status		
Radon production	Nearly there @ TRIUMF		
Collection/transfer	\checkmark		
EDM Cells	✓ but new ideas		
Polarization/lasers	\checkmark		
HV	OK (10kv/cm)		
Detection	Under development		
Gamma anisotropy	OK		
Beta asymmetry	To be developed		
Laser (2 photon)	Under development		
Magnetic shielding	Needed		

Thank you!

Extra Slides

Yields of Enhancer Isotopes: Ra, Rn, Fr

Presently available

- Decay daughters of ²²⁹Th, National Isotope Development Center, ORNL
 - ²²⁵Ra: 10⁸ /s

Projected rates at FRIB (B. Sherrill, MSU)

- Beam dump recovery with a ²³⁸U beam
 - Parasitic operation, available ~ 150 days per year
 - ²²⁵Ra: 6 x 10⁹ /s;
 ²²³Rn: 8 x 10⁷ /s;
 ²⁰⁸⁻²²⁰Fr: 10⁹ -10¹⁰ /s.
- Dedicated running with a ²³²Th beam
 - ²²⁵Ra: 5 x 10¹⁰ /s;
 ²²³Rn: 1 x 10⁹ /s;
 ²⁰⁸⁻²²⁰Fr: 10¹⁰ /s;

TRIUMF

Canada's National Laboratory for Particle and Nuclear Physics S-929 Radon-EDM Collaboration (Guelph, Michigan, SFU, TRIUMF) Spokesmen: T. Chupp, C. Svensson

Populate ²²¹Rn levels from ²²¹At @ ISAC – December 2013

RIUMF

Henning Heggen M.Sc. I Grad. Research Assistant TRILIS

Concept IG-LIS

- Decoupling of evaporation processes and laser ionization
 - Suppression of surface ions from target
 - Laser ionization in "cold" environment

²²⁵Ra EDM Prospects

R. J. Holt¹, K. Bailey¹, M. R. Dietrich¹, J. P. Greene¹, M. Kalita², W. Korsch²,
 Z.-T. Lu^{1,3}, P. Mueller¹, T. P. O'Connor¹, R. H. Parker^{1,3}, J. Singh¹, I. A. Sulai³
 ¹Argonne National Laboratory, Argonne, IL 60439
 ²Dept. of Physics and Astronomy, Univ. of Kentucky, Lexington, KY 40506
 ³Dept. of Physics and Enrico Fermi Institute, The Univ. of Chicago, Chicago, IL 60637

Phase	Phase 1	Phase 2 (upgrade)	Project X
Ra (mCi)	1-10	10	> 1000
Sens. 225 Ra (10 $^{-28}$ e cm)	100	10	0.1 - 1
Sens. $^{199}{\rm Hg}~(10^{-30}~{\rm e~cm})$	10	1	0.01-0.1

EDM of ²²⁵Ra enhanced

• Closely spaced parity doublet – Haxton & Henley (1983)

Large intrinsic Schiff moment due to octupole deformation

– Auerbach, Flambaum & Spevak (1996)

• Relativistic atomic structure (²²⁵Ra / ¹⁹⁹Hg ~ 3)

– Dzuba, Flambaum, Ginges, Kozlov (2002)

$$S = \langle \psi_0 | \hat{S}_z | \psi_0 \rangle = \sum_{i \neq 0} \frac{\langle \psi_0 | \hat{S}_z | \psi_i \rangle \langle \psi_i | \hat{H}_{PT} | \psi_0 \rangle}{E_0 - E_i} + c.c.$$

Enhancement Factor: EDM (²²⁵Ra) / EDM (¹⁹⁹Hg)

Skyrme Model	Isoscalar	Isovector	lsotensor
SIII	300	4000	700
SkM*	300	2000	500
SLy4	700	8000	1000

Schiff moment of ²²⁵Ra, Dobaczewski, Engel (2005) Schiff moment of ¹⁹⁹Hg, Ban, Dobaczewski, Engel, Shukla (2010)

9/10/13

²²⁵Ra:

 $| = \frac{1}{2}$

 $t_{1/2} = 15 d$

Spin-Exchange Optical Pumping

- Optically pump the Rb with circularly polarized laser light.
- Spin-exchange collisions transfer the polarization to the ³He, ¹²⁹Xe, radon nuclei.

