

CP violation and precision measurements at LHCb

Fred Blanc EPFL

PSI 2013

3rd Workshop on the Physics of Fundamental Symmetries and Interactions at low energies and the precision frontier

12 September 2013

Introduction

- LHCb physics goals:
 - precision tests of the Standard Model and search for New Physics
- Phenomena under study
 - *CP* violation in *B* and *D* decays
 - rare decays

Indirect searches for New Physics

- direct searches for New Physics in the forward region
- Finding New Physics (NP) at low energy
 - heavy NP particles can alter amplitude of loop processes
- New Physics can either:
 - be discovered in precision measurements and then confirmed with direct searches (e.g. @ ATLAS and CMS)
 - or NP particles are first observed at the energy frontier, and their properties then studied in precision measurements at 'low' energy

The LHCb detector

- LHCb is a single-arm forward spectrometer at the LHC
 - rapidity range: $1.9 < \eta < 4.9$
- Fully instrumented in the forward region
 - excellent vertex resolution (+boost) \rightarrow 40–50fs lifetime resolution
 - tracking stations before and after 4Tm dipole magnet

Vertex

RICH1

- particle identification with
 - two ring-imaging Cherenkov detectors
 - calorimetry
 - muon detectors

LHCb Event Display

CKM matrix and the Unitarity Triangle

$$\left(\begin{array}{cccc} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array}\right)$$

$$\mathcal{R}e(V_{\rm CKM}) \approx \begin{pmatrix} 1 & \lambda & \lambda^3 \\ \lambda & 1 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{pmatrix}$$

- Processes involving the b quark are sensitive to the CKM complex phase ⇒ CP violation
- Unitarity constraints
 ⇒ unitarity triangles
- "The" Unitarity Triangle from product of 1st and 3rd columns
 - 3 sides of comparable size ⇒ 3
 large angles

CKM matrix and the Unitarity Triangle

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

$$\mathcal{R}e(V_{\rm CKM}) \approx \begin{pmatrix} 1 & \lambda & \lambda^3 \\ \lambda & 1 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{pmatrix}$$

- Processes involving the b quark are sensitive to the CKM complex phase ⇒ CP violation
- Unitarity constraints
 ⇒ unitarity triangles
- "The" Unitarity Triangle from product of 1st and 3rd columns
 - 3 sides of comparable size ⇒ 3
 large angles

CKM matrix and the Unitarity Triangle

$$\mathcal{R}e(V_{\rm CKM}) \approx \left(\begin{array}{ccc} 1 & \lambda & \lambda \\ \lambda & 1 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{array}\right)$$

- Processes involving the b quark are sensitive to the CKM complex phase ⇒ CP violation
- Unitarity constraints
 ⇒ unitarity triangles
- "The" Unitarity Triangle from product of 1st and 3rd columns
 - 3 sides of comparable size ⇒ 3
 large angles

CP violation measurements in B decays

- Unitarity Triangle (*B*⁰ decays) Δm, & Δm. Δm. - β is already well measured. W^{\downarrow} - γ from hadronic *B* decays \overline{B}^0_{s} W B^0_{a} t, c, u• In B_s system, probe<u>the phase</u> 0.0 -0.2 0.0 0.2 0.4 0.8 of CKM element V_{ts} ō
 - measure interference between decay and mixing

Direct CP violation in $B_{(s)}^{0} \rightarrow K^{\pm} \pi^{\mp}$

- Measured direct CP asymmetry in $B_{(s)}^{0} \rightarrow K^{+}\pi^{-}$
 - based on 1 fb⁻¹ collected in 2011 at 7TeV
- Kinematic and particle identification (PID) variables used for selection, optimizing sensitivity to CP violation

Measuring angle γ

- Angle γ (phase of V_{ub}) from interference between b→c and b→u transitions
- Use $B^{\pm} \rightarrow D^0 h^{\pm}$ and $B^{\pm} \rightarrow D^0 h^{\pm}$ decays

- measure decay rates for identifiable initial and final states
- Determine *y* with three methods
 - GLW: $f_D = K^+ K^-$, $\pi^+ \pi^-$ (CP eigenstates) _{PLB 253 (1991) 483; 265 (1991) 172}
 - ADS: *f*_D=*K*[±]π[∓], *K*[±]π[∓]π⁺π⁻ (Cabibbo favoured doubly Cabibbo suppressed) _{PRL 78 (1997) 3257}
 - GGSZ: Dalitz analysis with $K_{\rm S}^0$ in the final state PRD 68 (2003) 054018

- $\gamma = 67^{\circ} \pm 12^{\circ}$ at 68% C.L., modulo 180° [PRELIMINARY]
- In agreement with CKM-unitarity fit $\gamma = (69.7^{+1.3}_{-2.8})^{\circ}$

Time-dependent *CP* in $B_s \rightarrow J/\psi \phi$

- Dataset: 1 fb⁻¹
- Ingredients for measuring ϕ_s in $B_s \rightarrow J/\psi \phi$
 - 1. Excellent decay time resolution to resolve fast oscillations
 - measurement of Δm_s (2 $\pi/\Delta m_s$ =355fs)
 - 2. flavor tagging to determine B flavor at time of production
 - use same- and opposite-side tagging algorithms
 - 3. angular analysis of Vector-Vector final state
 - disentangle *CP* even and odd amplitudes

24

4. apply maximum-likelihood fit to time-dependent angular analysis \Rightarrow measure ϕ_s

candidates / (0.1 ps)

Measurement of B_s oscillations

 ϕ_s from $B_s \rightarrow J/\psi \phi$

PRD 87 (2013) 112010

14

Flavour-specific asymmetry

$$\mathbf{a}_{\mathsf{sl}}^{\mathsf{s}} = \frac{\Gamma(\overline{\mathsf{B}}_{\mathsf{s}}^{\mathsf{o}}(\mathsf{t}) \rightarrow \mathsf{f}) - \Gamma(\mathsf{B}_{\mathsf{s}}^{\mathsf{o}}(\mathsf{t}) \rightarrow \overline{\mathsf{f}})}{\Gamma(\overline{\mathsf{B}}_{\mathsf{s}}^{\mathsf{o}}(\mathsf{t}) \rightarrow \mathsf{f}) + \Gamma(\mathsf{B}_{\mathsf{s}}^{\mathsf{o}}(\mathsf{t}) \rightarrow \overline{\mathsf{f}})}$$

LHCb-PAPER-2013-033

- Probes CP violation in $B^{0}{}_{s} \overline{B}^{0}{}_{s}$ mixing
- Predicted very sola \mathbb{B}_{17}° $\mathbb{B}_{$

Flavour-specific asymmetry: results

 $a_{sl} = (-0.06 \pm 0.50_{stat} \pm 0.36_{syst})\%$

sی <u>م</u> م 0 -0.02 LHCb D0 **D**0 Y(4S) HFAG -0.04 D0 -0.02 -0.04 0.02 0 a_{sl}^d

LHCb-PAPER-2013-033

- Most precise measurement to date
- In excellent agreement with SM
- No confirmation of D0 same-sign dilepton anomaly

Searches for Lepton Flavor Violation (LFV)

- Search for $\tau^- \rightarrow \mu^- \mu^+ \mu^-$ (1fb⁻¹ at 7 TeV)
 - large τ^{\pm} production rate at the LHC (mostly from $D_s^{\pm} \rightarrow \tau^{\pm} v$)
 - exploit the excellent LHCb muon ID capabilities
 - normalize with respect to $D_{s^{\pm}} \rightarrow \phi \pi^{\pm}$
 - **BF** $(\tau \rightarrow \mu^{-}\mu^{+}\mu^{-}) < 8.3 \times 10^{-8}$ @90% C.L. (Belle: BF < 2.1×10⁻⁸)
- Search for $B_{(s)}^0 \rightarrow e^{\pm} \mu^{\mp}$ (1fb⁻¹ at 7 TeV)
 - sensitive to SUSY, lepto-quarks (LQ), singlet Dirac neutrinos...
 - normalize with respect to $B^0 \rightarrow K^{\pm} \pi^{\mp}$
 - track and vertex quality cuts + BDT decision

 $\begin{array}{l} BF(B_{s}^{0} \rightarrow e^{\pm}\mu^{\mp}) < 1.1 \times 10^{-8} @ 90\% \text{ C.L.} \\ BF(B^{0} \rightarrow e^{\pm}\mu^{\mp}) < 2.8 \times 10^{-9} @ 90\% \text{ C.L.} \end{array}$

LHCb-PAPER-2013-030

robabilit

Signal

Background

0.5

 $(\Rightarrow M_{LQ} > 101 \& 135 \text{ TeV/c}^2!)$

LHCb-PAPER-2013-014

LHCb

BDT

Summary and future prospects

- Very successful first LHC run at LHCb ⇒ 3fb⁻¹
- Obtained many new or best B (and D) physics measurements
 - CP violation

- rare decays

- \Rightarrow
- Continue to probe fundamental symmetries and conservation laws
- Results in agreement with SM, putting strong constraints on New Physics models
- Detector maintenance and improvements during the current LHC shutdown
- Expect to collect ~5fb⁻¹ @13TeV in 2015-2017 \Rightarrow ~8 fb⁻¹ total
- 2018: detector upgrade to allow 40MHz readout and operation at 5 times higher luminosity
 ⇒ physics output rate to increase by factor 10–20!