HIGH PRECISION EXPERIMENTS
WITH COLD AND ULTRA-COLD NEUTRONS

Hartmut Abele
PSI, 10 September 2013

Hartmut Abele, Vienna University of Technology
Participating Institutions 2010 - 2013:

- IST Braunschweig
- Univ. Heidelberg
- ILL
- Univ. Jena
- Univ. Mainz
- Exzellenzcluster 'Universe' München
- Techn. Univ. München
- PTB Berlin
- Vienna University of Technology

Priority Areas

- CP-symmetry violation and particle physics in the early universe.
- The structure and nature of weak interaction and possible extensions of the Standard Model.
- Tests of gravitation with quantum objects
- Charge quantization and the electric neutrality of the neutron.

New Infrastructure (UCN-Source, cold Neutrons)
- * Coordinators (S. Paul, H.A.)
Priority Programme 1491

Research Area A: *CP-symmetry violation and particle physics in the early universe*
- Neutron EDM $\Delta E = 10^{-23}$ eV

Research Area B: *The structure and nature of weak interaction and possible extensions of the Standard Model*
- Neutron β-decay $V – A$ Theory

Research Area C: *Relation between gravitation and quantum theory*
- Neutron bound gravitational quantum states

Research Area D: *Charge quantization and the electric neutrality of the neutron*
- Neutron charge

Research Area E: *New measuring techniques*
- Particle detection
- Magnetometry
- Neutron optics
Neutron Alphabet deciphers the SM

SM Parameters
- Strength: G_F
- Quark mixing: V_{ud}
- Ratio: $\lambda = g_A/g_V$

$$\tau^{-1} = V_{ud}^2 G_F^2 (1 + 3\lambda^2) \frac{f^R m_e^5 c^4}{2\pi^3 \hbar^7}$$

$$d\Gamma \propto N(E_e) \left\{ 1 + a \frac{p_e \cdot \bar{p}_\nu}{E_e E_\nu} + b \frac{\Gamma m_e}{E_e} + \langle \vec{J} \rangle \cdot \left[A \frac{\vec{p}_e}{E_e} + B \frac{\bar{p}_\nu}{E_\nu} + D \frac{\vec{p}_e \times \bar{p}_\nu}{E_e E_\nu} \right] + \sigma \cdot \left[N \langle \vec{J} \rangle + G \frac{\vec{p}_e}{E_e} + Q' \hat{\rho}_e \hat{\rho}_e \cdot \langle \vec{J} \rangle + R \langle \vec{J} \rangle \times \frac{\vec{p}_e}{E_e} \right] \right\} d\Omega_e d\Omega_\nu dE_e,$$
Recent Results: PERKEO Collaboration

Electron Asymmetry A:

\[A = -0.11972^{(+52)}_{-65} \]

PERKEO II combined:

\[\lambda_{\Pi} = -1.2748^{(+13)}_{-14} \]

\[A_{\Pi} = -0.11926^{(+47)}_{-53} \]

Mund et al.,
PRL 110, 172502 (2013)

Neutrino Asymmetry B:

\[B = 0.9802(50) \]

Schumann et al.,
PRL 99, 191803 (2007)

Proton Asymmetry C:

first precision measurement

\[C = x_C(A + B) \]

\[C = -0.2377(36) \]

Schumann et al.,
PRL 100, 151801 (2008)
a bit history:

λ from neutron β-decay

-1.1900(200), PDG (1960)
-1.2500(200), PDG (1975)
-1.2610(40), PDG (1990)
-1.2594(38), Gatchina (1997)
-1.2660(40), M, ILL (1997)
-1.2740(30), PERKEO II (1997)
-1.2686(47), Gatchina, ILL (2001)
-1.2739(19), PERKEO II (2002)
-1.27590(+409)(−445), UCNA (2011)
-1.2756(30), UCNA (2013)
-1.2748(+13−14) PERKEO II (2013)

Close to publication:

aCORN @ NIST
aSPECT @ Mz, ILL
PERKEO III @ UHD, ILL, TUW

New Instruments

Nab, PERC
Sensitive theories beyond the Standard Model
Left Right Symmetry
Supersymmetry
Tensor or scalar interactions
GUT
Key Instrument: PERC

A clean, bright and versatile source of neutron decay products
Univ. Heidelberg & TU Wien, Mainz, ILL, FRM2, TU Munich

- **High Flux**: $\Phi = 2 \times 10^{10} \text{ cm}^{-2}\text{s}^{-1}$
 \rightarrow Decay rate of 1 MHz / metre

- **Polarizer**: $99.7 \pm 0.1 \%$
- **Spin Flipper**: $100.05 \pm 0.1 \%$
- **Analyzer**: $100 \% ^3\text{He-cells}$

Talk by B. Maerkisch: PERKEO & PERC

Ideal experiment for ESS, Poster, Camille Theroine

Poster by G. Konrad: PERC-Detector System

Diagram:

- **Polarizer**
- **Chopper**
- **Spin flipper**
- **v-selector**
- **Decay Volume, 8m**
- **Beam stop**
- **Analyzing area**
- **n-guide + solenoid: field B_0**
- **polarized, monochromatic n-pulse**
- **n + γ-beam stop**
- **solenoid, field B_1**
- **p+ + e-**
- **window-frame**
- **beam**
PERC – a clean bright and versatile source of neutron decay products

Source of electrons and protons from neutron decay
Magnetic field
- Decay volume: 8 m, 0.5 - 1.5 T
- Filter: 3 – 6 T
Non-depolarising guide

Preliminary Magnet Design

L = 11.3m

Precision experiments in particle and astrophysics with cold and ultracold neutrons

Heidelberg
Wien
FRM II, München
Grenoble
München

Bastian Märkisch

 prioritize programme 1491
PERC beam site Mephisto at FRM II

- “Empty” new hall
- Neutron guide: length 40 m, $R = 3000$ m, $m = 2.5$
- Expected intensity equal to PF1B at ILL
- Only very few neighbours: low background
- Easy ground level access
<table>
<thead>
<tr>
<th>SOURCE OF ERROR</th>
<th>COMMENT</th>
<th>SIZE OF CORRECT.</th>
<th>SIZE OF ERROR:</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-uniform n-beam</td>
<td>for $\Delta \Phi/\Phi = 10%$ over 1 cm width</td>
<td>2.5×10^{-4}</td>
<td>5×10^{-5}</td>
</tr>
<tr>
<td>other edge effects on e/p-window</td>
<td>for worst case at max. energy</td>
<td>4×10^{-4}</td>
<td>1×10^{-4}</td>
</tr>
<tr>
<td>magn. mirror effect, contin's n-beam</td>
<td></td>
<td>1.4×10^{-2}</td>
<td>2×10^{-4}</td>
</tr>
<tr>
<td>magn. mirror effect, pulsed n-beam</td>
<td>for $\Delta B/B = 10%$ over 8 m length</td>
<td>5×10^{-5}</td>
<td>$<10^{-5}$</td>
</tr>
<tr>
<td>non-adiabatic e/p-transport</td>
<td></td>
<td>5×10^{-5}</td>
<td>5×10^{-5}</td>
</tr>
<tr>
<td>background from n-guide</td>
<td>}is separately measurable</td>
<td>2×10^{-3}</td>
<td>1×10^{-4}</td>
</tr>
<tr>
<td>background from n-beam stop</td>
<td></td>
<td>2×10^{-4}</td>
<td>1×10^{-5}</td>
</tr>
<tr>
<td>backscattering off e/p-window</td>
<td></td>
<td>2×10^{-5}</td>
<td>1×10^{-5}</td>
</tr>
<tr>
<td>backscattering off e/p-beam dump</td>
<td></td>
<td>5×10^{-5}</td>
<td>1×10^{-5}</td>
</tr>
<tr>
<td>backscatt. off plastic scintillator</td>
<td>}for worst case</td>
<td>2×10^{-3}</td>
<td>4×10^{-4}</td>
</tr>
<tr>
<td>~ same with active e/p-beam dump</td>
<td>}for worst case</td>
<td>--</td>
<td>1×10^{-4}</td>
</tr>
<tr>
<td>neutron polarisation</td>
<td>Status 2010</td>
<td>3×10^{-3}</td>
<td>1×10^{-3}</td>
</tr>
</tbody>
</table>

Neutron Polarimetry on the 10^{-4} level

Talk Christine Klauser

What about the lifetime?

$\tau = 888.0 \pm 2.3 \text{ s} \quad \text{NIST}$

$\tau = 878.5 \pm 0.8 \text{ s} \quad \text{PNPI}$

$\tau = 879.8 \pm 0.75 \text{ s}$

$$\tau^{-1} = V_{ud}^2 G_F^2 (1 + 3 \lambda^2) \frac{f R m_e^5 c^4}{2 \pi^3 \hbar^7}$$

$\tau = 880.2 \pm 1.5 \text{ s from PERKEO} \quad \text{and} \quad 0^+ \rightarrow 0^+$
Priority Programme 1491

Research Area A: *CP*-symmetry violation and particle physics in the early universe
- Neutron EDM $\Delta E = 10^{-23}$ eV

Research Area B: The structure and nature of weak interaction and possible extensions of the Standard Model
- Neutron β-decay V – A Theory

Research Area C: Relation between gravitation and quantum theory
- Neutron bound gravitational quantum states

Research Area D: Charge quantization and the electric neutrality of the neutron
- Neutron charge

Research Area E: New measuring techniques
- Particle detection
- Magnetometry
- Neutron optics
Demonstration of Quantum States in the Gravity Potential of the Earth
Nesvizhevsky et al.
Nature 2002

qBounce, 2009
a 2-level system can be considered as a Spin $\frac{1}{2}$ - System

\[|3 > 3.32 \text{ peV} \]
\[|1 > 1.4 \text{ peV} \]

qBounce: Vibrating mirror

Show Case I: Rabi-type Spectroscopy of Gravity

NMR Spectroscopy Technique to explore magnetic moments

3 Regions:
I: 1st State selector/ Polarizer
II: Coupling
 - RF field
 - Vibr. mirror
III: 2nd State Selector / Analyzer

Gravity Resonance Spectroscopy Technique to explore gravity
Rabi Spectroscopy

NMResonance Spectroscopy Technique to explore magnetic moments

Fig. 4. Resonance curve of the Li7 nucleus observed in LiCl.

Fig. 5. Resonance curve of the F19 nucleus observed in NaF.
Transmission

![Graph showing frequency spectrums with labels 1↔3 and 1↔4, indicated at 2.1 mm/s.]

G. Cronenberg, PhD
Preparation: velocity selection

UCNs at PF2
Accept $5.7 < v_x < 9.5$ m/s
Gravity and Quantum Mechanics

Schrödinger equation:

\[
\left(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial z^2} + mgz \right) \varphi_n(z) = E_n \varphi_n(z)
\]

boundary conditions:

\[\varphi_n(0) = 0 \]

with 2nd mirror at height \(\varphi_n(l) = 0 \)

Solutions: Airy-functions: Ai & Bi

<table>
<thead>
<tr>
<th>(E_n)</th>
<th>(E_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.41peV</td>
<td>1.41peV</td>
</tr>
<tr>
<td>2.46peV</td>
<td>2.56peV</td>
</tr>
<tr>
<td>3.32peV</td>
<td>4.2 peV</td>
</tr>
</tbody>
</table>

~ 1 µm Surface roughness
\[n + ^{10}B \rightarrow ^{7}Li^* + \alpha \]

Region 1: State Selector

- UCN
- rough mirror
- neutron mirror

\begin{align*}
\text{Energy} [\text{peV}] & : \\
\text{Height} [\mu\text{m}] & : \\
\text{Length} [\text{cm}] & : \sim 8 \text{ cm}
\end{align*}
Region II

UCN → |1⟩ → |4⟩

\(\omega_{pq} \)

neutron mirror

scatterer

II

scatterer

II

counter
Region 2: the vibration table

- Oscillation with 4 Piezo actuators
- Internal capacitive sensors for position/tip/tilt

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z range</td>
<td>140 μm</td>
</tr>
<tr>
<td>Z range closed loop</td>
<td>100 μm</td>
</tr>
<tr>
<td>Z resolution closed loop</td>
<td>0.8 nm</td>
</tr>
<tr>
<td>Tip/tilt range</td>
<td>±0.5 mrad</td>
</tr>
<tr>
<td>Tip/tilt resolution closed loop</td>
<td>0.05 μrad</td>
</tr>
<tr>
<td>Tested frequency range</td>
<td>0-850 Hz</td>
</tr>
<tr>
<td>Maximal tested amplitude</td>
<td>4.8 mm/s</td>
</tr>
</tbody>
</table>
The key technology: Controlling the vibrations

T. Lins, Diplomarbeit, January 2011
Region III

scatterer

$|1\rangle \rightarrow |4\rangle$

neutron mirror

ω_{pq}

neutron mirror

scatterer

$|1\rangle$?

UCN

counter
Detector

Boron layer: $n + ^{10}B \rightarrow \alpha + ^{7}Li^* \rightarrow \alpha + ^{7}Li^3 + \gamma$

ArCo$_2$ Counter

Adapted geometry for low background

Improved shielding

$\varepsilon = 86.4 \%$

$R_0 = (0.65 \pm 0.02) \times 10^{-3} \text{ s}^{-1}$

M. Thalhammer, Diplomarbeit 2013

H. Saul, Diplomarbeit 2011

Poster by T. Jenke
Rabi Oscillation

State Revival
Based on 2 natural constants:
- Mass of the neutron m
- Planck constant \hbar

Plus Acceleration of earth g

$|3 > 3.32 \text{ peV}$

$|1 > 1.4 \text{ peV}$

Frequency Reference for Gravitation

$\omega_0 = \left(\frac{9\pi^2 m g^2}{8\hbar}\right)^{1/3}$

$E_n = \hbar \omega_0 \left(n - \frac{1}{4}\right)^{2/3}$

$\omega_{pq} = \frac{E_q - E_p}{\hbar} = \omega_q - \omega_p$

Hartmut Abele, Vienna University of Technology
Discoveries: the dark universe

Spectroscopy of Gravity
- It does not use electromagnetic forces
- It does not use coupling to em Potential

Hyothetical gravity-like forces
- Axions?
- Chameleons?

Axion

10^{-14} eV Scale

constraint on any possible new interaction
Dark Energy – Scalar Fields

2 Parameters β, n

$$V_{\text{eff}}(\phi) = V(\phi) + e^{\beta \phi/M_{\text{Pl}} \rho}.$$
Bounds on coupling β

- By comparing transition frequency with theoretical expectation:

$$\omega_{ab} - \omega_{ab}^{\text{theo}} = \beta \frac{m}{M} (\langle a|\phi(z)|a\rangle - \langle b|\phi(z)|b\rangle)$$

- as long as $\beta > 10^5$

- Cite as: arXiv:1207.0419v1
Show Case III: Search for gravity-like forces

Resonance Spectroscopy Technique to explore gravity

Rabi-type experiment:

- realization of gravity resonance method possible
- simple setup, no steps
- high(er) transmission
- upper mirror introduces 2nd boundary condition

T. Jenke, SPP1491-Treffen 2012, Frauenchiemsee
Gravity Resonance Spectroscopy 2012

50 days of beam time, 116 measurements

$|1\rangle \leftrightarrow |2\rangle$, $|1\rangle \leftrightarrow |3\rangle$, $|2\rangle \leftrightarrow |3\rangle$ and $|2\rangle \leftrightarrow |4\rangle$

σ = 48

- **stat. Significance:** 48σ
- **stat. accuracy:** $\nu_{12} = 258.2 \text{ Hz} \pm 0.8%$
- $\nu_{23} = 280.4 \text{ Hz} \pm 1.0%$
- $\nu_{13} = 539.1 \text{ Hz} \pm 0.5%$
- $\nu_{24} = 679.5 \text{ Hz} \pm 2.2%$

- **contrast:** 68%

10$^{-14}$ eV Scale
Applications II:
Strongly coupled chameleons

\[V_{\text{Chameleon}} = \beta \frac{m}{M_{Pl}} \Lambda \left(\frac{n + 2}{\sqrt{2}} \frac{\Lambda}{d} \left(\frac{d^2}{2} - z^2 \right) \right)^{\frac{2}{n+2}} \]
Applications I: Spin-dependant short-ranged interactions

\[V_{\text{axion}} = \frac{g_s g_p}{8\pi m_n c} \vec{\sigma} \cdot \vec{n} \left(\frac{1}{\lambda r^2} + \frac{1}{\lambda r} \right) \]

\[g_s g_p / \hbar c \geq \frac{3 \cdot 10^{-16}}{\sqrt{\text{days}}} \]

\[(\lambda = 10 \mu m, 68\% \text{ C.L.}) \]

discovery potential [Setup 2010]:

\[\frac{3 \cdot 10^{-16}}{\sqrt{\text{days}}} \]

T. Jenke, ÖPG 2012
Neutrons test Newton

\[V(r) = G \frac{m_1 \cdot m_2}{r} (1 + \alpha \cdot e^{-r/\lambda}) \]

Hypothetical Gravity Like Forces

Extra Dimensions:
The string and \(D_p \)-brane theories predict the existence of extra space-time dimensions

Infinite-Volume Extra Dimensions: Randall and Sundrum

Exchange Forces from new Bosons: a deviation from the ISL can be induced by the exchange of new (pseudo)scalar and (pseudo)vector bosons

- **Axion**
- **Scalar boson. Cosmological consideration**
- **Bosons from Hidden Supersymmetric Sectors**
- **Gauge fields in the bulk (ADD, PRD 1999)**

\(\rightarrow 0.2 \mu m < \lambda < 0.2 \text{ cm} \)

\(\rightarrow 10^6 < \alpha < 10^9 \)

\(\rightarrow \alpha < 10^6 \)

Chameleon fields-
Outlook

• Tests of Newton’s Inverse Square Law of Gravity at micron distances

• Search for an electric charge of the neutron

The Future: Ramsey-Method

Hartmut Abele, Vienna University of Technology
Research Area A: *CP-symmetry violation and particle physics in the early universe*
- Neutron EDM $\Delta E = 10^{-23}$ eV

Research Area B: *The structure and nature of weak interaction and possible extensions of the Standard Model*
- Neutron β-decay $V – A$ Theory

Research Area C: *Relation between gravitation and quantum theory*
- Neutron bound gravitational quantum states

Research Area D: *Charge quantization and the electric neutrality of the neutron*
- Neutron charge

Research Area E: *New measuring techniques*
- Particle detection
- Magnetometry
- Neutron optics
Since the Standard Model value for q_n requires extreme fine tuning, the smallness of this value may be considered as a hint for GUTs, where q_n is equal to zero.

Storage:

Improve limit by two orders of magnitude

45 kV/mm
Mainz Experiment

- Principle based on Borisovs experiment 1987
- Geometric modifications (see Poster of D. Brose et al.)
- Liquid PFPE as hor. mirror
Comparison with the experiment of Borisov 1987 with $\delta q_n = 9 \cdot 10^{-20} e/\sqrt{d}$:

<table>
<thead>
<tr>
<th>Modification</th>
<th>achieved</th>
<th>aspired</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase of slope</td>
<td>3.5</td>
<td>14</td>
</tr>
<tr>
<td>Enhancement of electric field</td>
<td>X</td>
<td>2</td>
</tr>
<tr>
<td>Extension of the flight path</td>
<td>2.25</td>
<td>X</td>
</tr>
<tr>
<td>Higher UCN flux</td>
<td>2.5</td>
<td>5</td>
</tr>
<tr>
<td>Reduced flux due to extended flight path</td>
<td>0.5</td>
<td>X</td>
</tr>
<tr>
<td>Overall gain</td>
<td>9.8</td>
<td>157.5</td>
</tr>
</tbody>
</table>

Measured sensitivity: $\delta F = 8 \cdot 10^{-34} N/\sqrt{d}$
Gravity tests with quantum objects

Neutron Beta Decay, PERC collaboration
- J Erhart, E.Jericha, C.Goesselsberger, C.Klauser, G.Konrad, H. Saul X.Wang, Collaboration with HD, MZ, TUM, ILL

Interferometry
- Y. Hasegawa, H. Geppert, M.Zawisky, T.Potocar, D.Erdösi, S.Sponar

Neutron Radiography
- M. Zawisky,

N_TOF/USANS, E. Jericha, G. Badurek,
Gravity Resonance Spectroscopy
- Quantum states in the gravity potential of the earth and coherence superposition

Search for deviations from Newton's gravity law at short distances
- Large extra dimensions
- Dark matter particles
- Dark energy

Tests of weak interaction with neutron beta-decay experiments
- New results published (UCNA, PERKEO)
- Experiment PERC, Nab

Scientific Programme SPP 1491