

HIGH PRECISION EXPERIMENTS WITH COLD AND ULTRA-COLD NEUTRONS

Hartmut Abele PSI, 10 September 2013

Hartmut Abele, Vienna University of Technology

- Participating Institutions 2010 2013:
 - IST Braunschweig
 - Univ. Heidelberg
 - ILL
 - Univ. Jena
 - Univ. Mainz
 - Priority Areas
 - CP-symmetry violation and particle physics in the early universe.
 - The structure and nature of weak interaction and possible extensions of the Standard Model.
 - Tests of gravitation with quantum objects
 - Charge quantization and the electric neutrality of the neutron.
 - New Infrastructure (UCN-Source, cold Neutrons)
 - * Coordinators (S. Paul, H.A.)

- Exzellenzcluster ,Universe' München
- Techn. Univ. München
- PTB Berlin
- Vienna University of Technology

Priority Programme 1491

- Research Area A: CP-symmetry violation and particle physics in the early universe
 - Neutron EDM $\Delta E = 10^{-23} \text{ eV}$
- Research Area B: The structure and nature of weak interaction and possible extensions of the Standard Model
 - Neutron β -decay V A Theory
- Research Area C: Relation between gravitation and quantum theory
 - Neutron bound gravitational quantum states
- Research Area D: Charge quantization and the electric neutrality of the neutron
 - Neutron charge
- Research Area E: New measuring techniques
 - Particle detection
 - Magnetometry
 - Neutron optics

Neutron Alphabet deciphers the SM

Observables

- Lifetime τ
- Correlation A
- Correlation B
- Correlation C
- Correlation a
- Correlation D
- Correlation N
- Correlation Q
- Correlation R
- Beta Spectrum
- Proton Spectrum
- Polarized Spectra
- Beta Helicity

Recent Results: PERKEO Collaboration

a bit history:

λ from neutron β-decay

- -1.1900(200), PDG (1960)
- -1.2500(200), PDG (1975)
- -1.2610(40), PDG (1990)
- -1.2594(38), Gatchina (1997)
- -1.2660(40), M, ILL (1997)
- -1.2740(30), PERKEO II (1997)
- -1.2686(47), Gatchina, ILL (2001)
- -1.2739(19), PERKEO II (2002)
- -1.27590(+409)(-445), UCNA (2011)
- -1.2756(30), UCNA (2013)
- -1.2748(⁺¹³₋₁₄) PERKEO II (2013)

Close to publication:

- acorn @ NIST
- PERKEO III @ UHD, ILL, TUW

New Instruments

Nab, PERC

Sensitive theories beyond the Standard Model

- Left Right Symmetry
- Supersymmetry
- Tensor or scalar interactions
- GUT

Key Instrument: PERC

A clean, bright and versatile source of neutron decay products Univ.Heidelberg & TU Wien, Mainz, ILL,FRM2,TU Munich

- High Flux : $\Phi = 2 \times 10^{10} \text{ cm}^{-2} \text{s}^{-1}$ \rightarrow Decay rate of 1 MHz / metre
- Polarizer: 99.7 ± 0.1 %
- Spin Flipper: 100.05 ± 0.1 %

Talk by B. Maerkisch: PERKEO & PERC

• Analyzer: 100 % ³He-cells Ideal experiment for ESS, Poster, Camille Theroine

PERC – a clean bright and versatile source of neutron decay products

Bastian Märkisch

PERC beam site Mephisto at FRM II

SOURCE OF ERROR	COMMENT	<u>SIZE</u> <u>OF</u> <u>CORRECT.</u>	<u>SIZE OF</u> ERROR:
non-uniform n-beam	for $\Delta \Phi / \Phi = \underline{10} \ \underline{\%} \ \text{over} \ 1 \ \text{cm}$ width	2.5 <u>·10⁻⁴</u>	5 <u>·10⁻⁵</u>
other <u>edge effects on </u> e/p- <u>window</u>	for worst case <u>at</u> max. energy	4 <u>·10⁻⁴</u>	1 <u>·10⁻⁴</u>
magn. mirror effect, contin's n-beam		1.4 <u>·10⁻²</u>	2 <u>·10⁻⁴</u>
magn. mirror effect, pulsed n-beam	for $\Delta B/B = \underline{10}$ % over 8 m length	<u>5·10⁻⁵</u>	< <u>10⁻⁵</u>
non-adiabatic_e/p-transport		<u>5·10⁻⁵</u>	<u>5·10⁻⁵</u>
background from n-guide		<u>2·10⁻³</u>	<u>1·10⁻⁴</u>
background from n-beam stop	fis <u>separately measurable</u>	2 <u>·10⁻⁴</u>	1 <u>·10⁻⁵</u>
backscattering off e/p-window		<u>2·10⁻⁵</u>	1 <u>·10⁻⁵</u>
backscattering off e/p-beam dump		<u>5·10⁻⁵</u>	<u>1·10⁻⁵</u>
backscatt. off plastic scintillator		<u>2·10⁻³</u>	<u>4·10⁻⁴</u>
~ same with active e/p-beam dump	for worst case	Ξ	<u>1·10⁻⁴</u>
neutron polarisation	Status 2010	3 <u>·10⁻³</u>	<u>1·10⁻³</u>

Neutron Poarimetry on the 10⁻⁴ level Talk Christine Klauser

Dubbers, Baessler, Märkisch, Schumann, Soldner, Zimmer, H.A., arXiv 2007

<u>What about the lifetime?</u>

• τ = 888.0 ± 2.3 s NIST • τ = 878.5 ± 0.8 s PNPI

• τ **= 879.8 ± 0.75 s**

$$\tau^{-1} = V_{ud}^{2} G_{F}^{2} (1 + 3\lambda^{2}) \frac{f^{R} m_{e}^{5} c^{4}}{2\pi^{3} \hbar^{7}}$$

• τ = 880.2 ± 1.5 s from PERKEO and 0⁺ \rightarrow 0⁺

Hartmut Abele, University of Heidelberg

Priority Programme 1491

- Research Area A: CP-symmetry violation and particle physics in the early universe
 - Neutron EDM $\Delta E = 10^{-23} \text{ eV}$
- Research Area B: The structure and nature of weak interaction and possible extensions of the Standard Model
 - Neutron β -decay V A Theory
- Research Area C: Relation between gravitation and quantum theory
 - Neutron bound gravitational quantum states
- Research Area D: Charge quantization and the electric neutrality of the neutron
 - Neutron charge
- Research Area E: New measuring techniques
 - Particle detection
 - Magnetometry
 - Neutron optics

Quantum States in the Gravity Potential

Simulation: Reiter, Schlederer, Seppi

Demonstration of Quantum States in the Gravity Potential of the Earth Nesvizhevsky et al. Nature 2002

qBounce, 2009

Rabi-Gravity-Spectroscopy

Show Case I: Rabi-type Spectroscopy of Gravity

NMR Spectroscopy Technique to explore magnetic moments

- 3 Regions:
 - I: 1st State selector/ Polarizer
 - II: Coupling
 - RF field
 - Vibr. mirror
 - III: 2nd State Selector / Analyzer

Gravity Resonance Spectroscopy Technique to explore gravity

Rabi Spectroscopy

NMResonance Spectroscopy Technique to explore magnetic moments

FIG. 5. Resonance curve of the F19 nucleus observed in NaF.

IG. 4. Resonance curve of the Li⁷ nucleus observed in LiCl. . 3. Resonance curve of the Li⁶ nucleus observed in LiC

Rabi 2012 - preliminary

Transmission

G. Cronenberg, PhD

Preparation: velocity selection

UCNs at PF2 Accept 5.7 < v_x < 9.5 m/s

Gravity and Quantum Mechanics

Schrödinger equation:

$$\left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial z^2} + mgz\right)\varphi_n(z) = E_n\varphi_n(z)$$

boundary conditions:

 $\varphi_n(0) = 0$ with 2nd mirror at height $\varphi_n(l) = 0$

Solutions: Airy-functions: Ai & Bi

Region 1: State Selector

$n+{}^{10}B \rightarrow {}^{7}Li^* + \alpha$

Region 2: the vibration table

- Oscillation with 4 Piezo actuators
- Internal capazitive sensoren for position/tip/tilt

Z range	140 µm	
Z range closed loop	100 µm	
Z resolution closed loop	0,8 nm	
Tip/tilt range	±0,5 mrad	
Tip/tilt resolution closed loop	0.05 µrad	
Tested frequency range	0-850 Hz	
Maximal tested amplitude	4,8 mm/s	

Region III

Detector

Boron layer: $n+{}^{10}B \rightarrow \alpha + {}^{7}Li^* \rightarrow \alpha + {}^{7}Li^{3+} + \gamma$ ArCo₂ Counter Adapted geometry for low background Improved shielding $\epsilon = 86.4 \%$ $R_0 = (0.65 \pm 0.02) \times 10^{-3} s^{-1}$

M. Thalhammer, Diplomarbeit 2013

H. Saul, Diplomarbeit 2011

Poster by T. Jenke

Rabi Oscillation

Frequency Reference for Gravitation

- Based on 2 natural constants:
 - Mass of the neutron m
 - Planck constant h
 - Plus Acceleration of earth g

$$\omega_0 = \left(\frac{9\pi^2 mg^2}{8\hbar}\right)^{1/3}$$

$$E_n = \hbar \omega_0 \left(n - \frac{1}{4} \right)^{2/3}$$

Discoveries: the dark universe

Spectroscopy of Gravity

- It does not use electromagnetic forces
- It does not use coupling to em Potential

Hyothetical gravity-like forces

- Axions?
- Chameleons?

10⁻¹⁴ eV Scale

constraint on any possible new interaction

Dark Energy – Scalar Fields

Chameleon fields, Brax et al. PRD 70, 123518 (2004)

Solution 2 Parameters β , n

$$V_{\rm eff}(\phi) = V(\phi) + e^{\beta \phi/M_{\rm Pl}}\rho.$$

n

<u>q</u>Bounce and Chameleons

Sounds on coupling β

 By comparing transition frequency with theoretical expectation:

$$\omega_{ab} - \omega_{ab}^{\text{theo}} = \beta \frac{m}{M} \left(\langle a | \phi(z) | a \rangle - \langle b | \phi(z) | b \rangle \right)$$

- as long as $\beta > 10^5$
- Cite as: arXiv:1207.0419v1

FIG. 2: The profiles of a chameleon field, calculated in the strong coupling limit as the solutions of Eq.(81) in the spatial region $z^2 \leq \frac{d^2}{4}$ and $n \in [1, 10]$.

Show Case III: Search for gravity-like forces

Resonance Spectroscopy Technique to explore gravity

Rabi-type experiment with damping

- realization of gravity resonance method possible
- simple setup, no steps
- high(er) transmission
- upper mirror introduces 2nd boundary condition

T. Jenke, SPP1491-Treffen 2012, Frauenchiemsee

50 days of beam time, 116 measurements

Gravity Resonance Spectroscopy 2012

Applications II: Strongly coupled chameleons

$$V_{\text{Chameleon}} = \beta \frac{m}{M_{Pl}} \Lambda \left(\frac{n+2}{\sqrt{2}} \frac{\Lambda}{d} \left(\frac{d^2}{2} - z^2 \right) \right)^{\frac{2}{n+2}}$$

35

Applications I: Spin-dependant short-ranged interactions

Neutrons test Newton

$$V(r) = G \frac{m_1 \cdot m_2}{r} (1 + \alpha \cdot e^{-r/\lambda})$$

Hypothetical Gravity Like Forces

Extra Dimensions:

The string and D_p -brane theories predict the existence of extra space-time dimensions

Infinite-Volume Extra Dimensions: Randall and Sundrum

Exchange Forces from new Bosons: a deviation from the ISL can be induced by the exchange of new (pseudo)scalar and (pseudo)vector bosons

Strength α

🍩 Range λ

- Scalar boson. Cosmological consideration
- Bosons from Hidden Supersymmetric Sectors
- Gauge fields in the bulk (ADD, PRD 1999) - - \rightarrow 10⁶ < α < 10⁹

Supersymmetric large Extra Dimensions (B.& C.) - - - $\rightarrow \alpha < 10^{6}$ Chameleon fields-

Outlook

• Tests of Newton's Inverse Square Law of Gravity at micron distances

• Search for an electric charge of the neutron

Proposal: H. A. et al., Phys.Rev. D81,065019 (2010)

The Future: Ramsey-Method

Hartmut Abele, Vienna University of Technology

Priority Programme 1491

- Research Area A: CP-symmetry violation and particle physics in the early universe
 - Neutron EDM $\Delta E = 10^{-23} \text{ eV}$
- Research Area B: The structure and nature of weak interaction and possible extensions of the Standard Model
 - Neutron β -decay V A Theory
- Research Area C: Relation between gravitation and quantum theory
 - Neutron bound gravitational quantum states
- Research Area D: Charge quantization and the electric neutrality of the neutron
 - Neutron charge
- Research Area E: New measuring techniques
 - Particle detection
 - Magnetometry
 - Neutron optics

Charge quantization and the electric neutrality of the neutron.

Since the Standard Model value for q_n requires extreme fine tuning, the smallness of this value may be considered as a hint for GUTs, where q_n is equal to zero.

Energy E [peV]

1000

800

600

 ΔE^{-}

 ΔE^+

Frequency (E/h) [Hz]

Storage:

Improve limit by two orders of magnitude

45 kV/mm

Setup Mainz Experiment

- Principle based on Borisovs experiment 1987
- Geometric modifications (see Poster of D. Brose et al.)
- Liquid PFPE as hor. mirror

Comparison with the experiment of Borisov 1987 with $\delta q_n = 9 \cdot 10^{-20} e / \sqrt{d}$:

Theoretical gain in Sensitivity/ $\sqrt{\mathrm{d}}$			
Modification	achieved	aspired	
Increase of slope	3.5	14	
Enhancement of electric field	Х	2	
Extension of the flight path	2.25	Х	
Higher UCN flux	2.5	5	
Reduced flux due to extended flight path	0.5	Х	
Overall gain	9.8	157.5	

Measured sensitivity: $\delta F = 8 \cdot 10^{-34} N / \sqrt{d}$

The Team at Atominstitut

Gravity tests with quantum objects

 G. Cronenberg, H. Filter, T. Jenke, H. Lemmel, M. Thalhammer, Collaboration HD, TUM, ILL: P. Geltenbort (ILL), U. Schmidt (HD), T. Lauer (TUM),

Neutron Beta Decay, PERC collaboration

J Erhart, E.Jericha, C.Goesselsberger, C.Klauser, G.Konrad, H. Saul
X.Wang, Collaboration with HD, MZ, TUM, ILL

Interferometry

Y. Hasegawa, H. Geppert, M.Zawisky, T.Potocar, D.Erdösi,
S.Sponar

Neutron Radiography

- M. Zawisky,

N_TOF/USANS, E. Jericha, G. Badurek,

Summary

- Gravity Resonance Spectroscopy
 - Quantum states in the gravity potential of the earth and coherence superposition
- Search for deviations from Newtons gravity law at short distances
 - Large extra dimensions
 - Dark matter particles
 - Dark energy
- Tests of weak interaction with neutron beta-decay experiments
 - New results published (UCNA, PERKEO)
 - Experiment PERC, Nab
- Scientific Programme SPP 1491