The Fermilab "Muon g-2" Experiment

Lawrence Gibbons

Cornell University

The goal:

The muon anomalous magnetic moment (a_{μ}) to 0.14 ppm via spin precession

$$a_{\mu} = \frac{g-2}{2}$$
$$\vec{\mu} = (g \frac{q}{2m} \vec{S})$$

Dirac, relativistic QM (ie, tree level): g = 2Loop corrections: $a_{\mu} > 0$

+

a_µ receives contributions
 ☑ from all SM particles
 ☑ from Beyond SM particles

The status of a_{μ} :

Weak interactions

of leptons and quarks

$a_{\mu} = 11659208.0(5.4)(3.3) \times 10^{-10}$ [0.54 ppm] Bennet *et al*, PRD 73072003 (2006)

Why improve a_{μ}

...when $a_e = 1159652180.73(28) \times 10^{-12} (0.3 \text{ ppb})$? Hanneke, Fogwell, and Gabrielse, PRL 100, 120801 (2008)

Magnetic moment: interaction flips helicity

 $\rightarrow a_{\ell}$ sensitivity scales like $(m_{\ell}/m_X)^2$

 $\rightarrow (m_{\mu}/m_{e})^{2} \rightarrow 40,000x$ increase in sensitivity

• must know SM corrections)-:

 Beyond SM sensitivity! compensates for 1000x reduced precision (-: The spin on a_µ Standard Model Evaluation of a_µ QED: $a_{\mu}(QED) = 11658471.8951(80) \times 10^{-10}$ • $O([\alpha/\pi]^5)$ Aoyama, Hayakawa, Kinoshita and Nio, PRL 109, 111808 I2,000+ diagrams! • far better than we need Electroweak: $a_{\mu}(EW) = 15.4(2) \times 10^{-10}$ probing EW was E821's goal to 2 loops

...hadronic contributions

Hadronic Vacuum polarization (LO and NLO)

optical theorem + analyticity

 $\sigma(e^+e^- \to \mu^+\mu^-)$ heavily weights Erro to low E_{CM} ρ, ω Slowly varying: measured (low s) or 0.63 → pQCD (high s) ϕ,\ldots

 ρ, ω

...hadronic contributions Hadronic Vacuum Polarization (LO and NLO) many new and anticipated inputs:

...hadronic contributions

- Hadronic light by light
- nonperturbative, but higher order
- estimated via modeling + e.g.,
 2-photon data
 - will soon be dominant uncertainty
- KLOE-2 will constrain with new $\gamma^*\gamma^*$ data

 $a_{\mu}(HLxL) = 11.6(4.0) \times 10^{-10}$ Prades, de Rafael, Vainshtein

- size ~ NLO HVP
- lattice calculations under way (10% in '17 feasible)

Combining it all...

No ρ - γ mixing correction in τ data

• experiment vs SM

 $\Delta a_{\mu} \sim (33 - 38) \pm 8.3$

- deviation remains > 3.5 σ
- $\Delta a_{\mu} > 2 \cdot a_{\mu}^{EW}!$
 - If new physics, why haven't we seen it?
- a_{μ} sensitive to ratio

coupling (mass scale)

Coupling $\ll G_F$ (hidden sectors) Masses $\gg M_Z$

Outlook $(5.1 \rightarrow 3) \times 10^{-10}$ on prediction circa 2017

Good agreement among various aSM_µ assessments Benayouna, Davida, DelBuonoa, Jegerlehner, EPJ C72, 1848 (2012)

Beyond Standard Model

generally:
$$\delta a_{\mu}(\text{N.P.}) = \mathcal{O}(C) \left(\frac{m_{\mu}}{M}\right)^2, \quad C = \frac{\delta m_{\mu}(\text{N.P.})}{m_{\mu}}$$

classify new physics: C very model-dependent

Contributions affect both a_{μ} and $h \rightarrow \gamma \gamma$

Split spectra, large Higgsino Mass, ... ➡ consistent w/ LHC, large a_µ contrib's

LHC and g-2

$$\Delta a_{\mu} \approx 150 \times 10^{-10} \left(\frac{\tan \beta}{10}\right) \left(\frac{(100 \text{GeV})^2}{\mu M_{\text{wino}}}\right)$$
$$\Delta a_{\mu} \approx 15 \times 10^{-10} \left(\frac{\tan \beta}{10}\right) \left(\frac{(100 \text{GeV})^2}{m_{\tilde{\mu}L}^2 m_{\tilde{\mu}R}^2 / \mu M_{\text{bino}}}\right)$$

Goal: a_{μ} to < 0.14 ppm

BNL E821 stat's limited bring collaboration + its experience + its ring to FNAL

Deliver 21x the μ 's

Fermilab E989 "Muon g - 2"

Goal: a_{μ} to < 0.14 ppm

BNL E821 stat's limited bring collaboration + its experience + its ring to FNAL

Deliver 2Ix the μ 's

Fermilab E989 "Muon g - 2"

The principles: motion in B field, V-A

• cyclotron: $\omega_C = B \frac{e}{m_{\mu}c} \frac{1}{\gamma}$ • spin precession: $\omega_s = B \frac{g_{\mu}}{2} \frac{e}{m_{\mu}c} + B \frac{e}{m_{\mu}c} \left(\frac{1}{\gamma} - 1\right)$

g ≠ 2

- relative precession:

 $\omega_{a}\left(\omega_{s}-\omega_{C}\right)=B\frac{e}{m_{\mu}c}\left(\frac{g_{\mu}}{2}-1\right)$

Larmor

Ve

Thomas

Eth

The principles: motion in B field, V-A

- cyclotron: $\omega_C = B \frac{e}{m_e}$
- spin precession: $\omega_s = B \frac{g_{\mu}}{2} \frac{e}{2}$
- relative precession:

 ω_{a}

g = 2

 $rac{g_\mu}{2}rac{e}{m_\mu c}+Brac{e}{m_\mu c}$

Thomas

100

Taking the muon for also in Producing 21x the muons:

·			
parameter	BNL	FNAL	gain factor $\mathrm{FNAL}/\mathrm{BNL}$
Y_{π} pion/p into channel acceptance	$\approx 2.7\text{E-5}$	$\approx 1.1\text{E-5}$	0.4
L decay channel length	88 m	900 m	2
decay angle in lab system	$3.8 \pm 0.5 \text{ mr}$	forward	3
$\delta p_{\pi}/p_{\pi}$ pion momentum band	$\pm 0.5\%$	$\pm 2\%$	1.33
FODO lattice spacing	6.2 m	$3.25 \mathrm{~m}$	1.8
inflector	closed end	open end	2
total			(11.5)

✓ ~12x µ / proton yield
 ✓ ~3x repetition rate:
 ⇒ only ~3-5x BNL instantaneous rate and ~1 year of protons

Taking the muon for also in Producing 21x the muons:

parameter	BNL	FNAL	gain factor FNAL/BNL
Y_{π} pion/p into channel acceptance	$\approx 2.7\text{E-5}$	$\approx 1.1\text{E-5}$	0.4
L decay channel length	88 m	900 m	2
decay angle in lab system	$3.8\pm0.5~\mathrm{mr}$	forward	3
$\delta p_{\pi}/p_{\pi}$ pion momentum band	$\pm 0.5\%$	$\pm 2\%$	1.33
FODO lattice spacing	6.2 m	$3.25 \mathrm{~m}$	1.8
inflector	closed end	open end	2
total			(11.5)

✓ ~12x µ / proton yield
 ✓ ~3x repetition rate:
 ⇒ only ~3-5x BNL instantaneous rate and ~1 year of protons

Side benefit:

reduced hadronic flash = improved systematics!

Taking the ring for a spin

1 mm vertical flex tolerance

The precision B field

Measurement + calibration of B:

- Pulsed NMR with free-induction decay yields proton Larmor precession ω_p in same B field
- Muon hyperfine normalizes (30 ppb)

Absolute calibration: spherical water sample

Improvement highlights

- Extensive Opera modeling of B
- Improved building temp. control (±1°C)
- Improved shimming:
 - 1/2 BNL gradient
 - Improved uniformity
- Improved magnet insulation
- Improved absolute calibration process
- More fixed probes
- Improved trolley position accuracy

0.17 ppm → 0.07 ppm

uncertainty

Measuring ω_a

24 Calorimetry stations (E and t)

- 9x6 (2.5x2.5) cm PbF₂ array (X₀ = 0.93 cm)
- Silicon Photomultipliers
- 500 MSPS waveform digitizers

Improvements over E821

- Improved gain control and laser monitoring
- Pileup suppression via segmentation
- entire µ fill digitized, transferred to DAQ
 - opens new analysis methods
 - better gain systematic control
- reduced pion "flash"

 ω_a systematics: 0.18 \rightarrow 0.07 ppm

Tracking

Straw tubes in vacuum in front of 2 PbF_2 arrays

- stereo angle: ±7.5° fom vertical
- Improved diagnostics
 - identify pileup sample
 - identify lost muon sample
 - E/p calibration
- muon EDM measurement (tips precession plane)
 - $d_{\mu} < 1.8 \times 10^{-19} \text{ e-cm} \rightarrow \text{few } 10^{-21}$

Summary / Status

Expected beam + incremental measurement improvements:

 \Rightarrow a_µ to ± 0.1(stat) ± 0.07 (ω_P) ± 0.07 (ω_a)

Detector funding in hand

- NSF Major Research Instrumentation for calo+daq
- DOE Early Career for straw chambers

Ring has been transferred BNL \rightarrow Fermilab

DOE Critical Decision - 1 review next week

- proceed to technical design
- technically-driven schedule: beam in 2016
- funding-driven schedule: beam in 2017-2018 (?)