EXPERIMENTS AT CERN

Francis Newson Birmingham University NA622

September 2013

Introduction +

- R_K (recent results) +
- Rare kaon decays (prospects) +

PAUL SCHERRER INSTITUT

Kaon physics

Minimal Flavour Laboratory

- Kaons are the **simplest system** in which flavour physics effects can be studied. Historically, many discoveries have been made in the kaon sector:
- Indirect CP violation (K0 mixing)
- **GIM mechanism** (charm quark prediction)

Clean environment

- Kaon have simple decay topologies → clean experimental signatures
- Rare decay modes dominated by short distance contributions allow very accurate theoretical predictions

Sensitive to new physics

- GIM suppression and hierarchical CKM matrix → flavour changing neutral current (FCNC) transitions in the kaon sector are most suppressed (effects due to b → d and b → s transitions are larger)
- New physics (NP) may not be hierarchical so effects would be most visible in the kaon sector

BNL E865 E77 E787 E949

CERN NA31 CPLEAR NA48 NA62 LNF KLOE KLOE2

IHEP ISTRA+ OKA KEK/ J-PARC E391a KOTO TREK

3

around the world

Stopped kaons

Decay in flight

Collider φ Factory

Kaons at CERN

NA31 1979 - 1991 Direct CP violation in neutral Kaons

NA48 1997 - 2004

Direct CP violation in neutral Kaons
/1 Rare K_s and hyperon decays
/2 K[±] decays, K_{e4}, Rare K studies

NA62-R_K 2007 R_K: lepton universality

NA62 2014 Golden mode πνν

R : Lepton universality

 $R_K = \frac{\Gamma \left(K^{\pm} \to e^{\pm} \nu_e \right)}{\Gamma \left(K^{\pm} \to \mu^{\pm} \nu_{\mu} \right)}$ Ke₂ -µ2

R_K lepton universality

Standard Model
• The Standard Model process is helicity supressed.

$$R_{K}^{SM} = \frac{m_{e}^{2}}{m_{\mu}^{2}} \left(\frac{m_{K}^{2} - m_{e}^{2}}{m_{K}^{2} - m_{\mu}^{2}} \right)^{2} \left(1 + \delta R_{K}^{\text{rad.corr.}} \right) = 2.477(1) \times 10^{-5}$$
[Cirigliano, Rosell, PhysRevLett 99 (2007) 231801]

Beyond the Standard Model

• Loop effects are predicted to lead to **lepton flavour violating coupings** IH^+v_{τ} which give dominant contribution to ΔR_{K}

$$R_K^{LFV} \approx R_K^{SM} \left[1 + \left(\frac{m_K^4}{M_{H\pm}^4}\right) \left(\frac{m_\tau^2}{M_e^2}\right) |\Delta_{13}|^2 \tan^6 \beta \right]$$

[Masiero, Paradisi, Petronzio PhysRevD 74 (2006) 011701]

 At tree level, decay via charged Higgs, H⁺ instead of W⁺ leaves R_K unchanged

- Loops with SUSY particles can modify $R_{\rm K}$ by up to ${\sim}1\%$

Rk numbers

- 0.04% relative error on Standard Model prediction
- O(1%) enhancement from New Physics

12% relative error on World Average before NA62-R_K

0.5% relative error on NA62-R_K measurement

2010 PDG Average: $R_{K} = (2.493 \pm 0.031) \times 10^{-5}$

[JPhys G 37 (2010) 075021]

NA48 & NA62-Rk detector

Measurement

Drift chambers

Spectrometer resolution

 $\sigma_p/p = 0.48\% \oplus 0.009\% p \ [GeV/c]$

Liquid knypton calorimeter

Lkr Resolution (GeV, cm, ns)

$$\frac{\sigma_E}{E} = \frac{0.032}{\sqrt{E}} \oplus \frac{0.09}{E} \oplus 0.0042$$

$$\frac{\sigma_{X,Y}}{E} = \frac{0.42}{\sqrt{E}} \oplus 0.06$$
$$\sigma_t = \frac{2.5}{\sqrt{E}}$$

Muon Misidentification Catastrophic bremsstrahlung in or in front of LKr

- Subsample of data taken with a 9.2 X_0 Pb bar between HOD's
- Allows collection of electron free samples
- Correct method bias (ionization loss at low p, bremsstrahlung at high p) with GEANT 4

Data samples

detector configurations

 K^+/K^- lead bar / no lead bar

independent measurements

$R_{K} = (2.488 \pm 0.010) \times 10^{-5}$

Source	δR _κ (10 ⁻⁵)
Statistics	0.007
K _{µ2} bkg	0.004
K _{e2γ} SD+ bkg	0.002
K _{e3} , ππ ⁰ bkg	0.003
Muon halo bkg	0.002
Material budget	0.002
Acceptance corr	0.002
DCH alignment	0.001
Electron ID	0.001
LKr readout eff	0.001
Total	0.010

 $R_K = (2.488 \pm 0.007_{\text{stat.}} \pm 0.007_{\text{syst.}}) \times 10^{-5}$ [PhysLettB 719 (2013) 326]

 $\frac{\chi^2}{N_{D.O.F}} = \frac{47}{39} \quad (P = 18\%)$

The golden modes

16

$\begin{array}{ccc} K^+ \rightarrow \pi^+ \nu \overline{\nu} & FCNC \\ K_L \rightarrow \pi^0 \nu \overline{\nu} & Dominated by box and penguin diagrams \end{array}$

The golden modes

• Theoretically clean handle on CKM matrix unitarity:

 $\begin{array}{ll} \mathsf{K}^{+} \rightarrow \pi^{+} \nu \nu & \longleftrightarrow & \left| \mathsf{V}_{\mathsf{ts}}^{*} \mathsf{V}_{\mathsf{td}} \right| \\ \\ \mathsf{K}_{\mathsf{L}} \rightarrow \pi^{0} \nu \nu & \longleftrightarrow & \operatorname{Im}(\mathsf{V}_{\mathsf{ts}}^{*} \mathsf{V}_{\mathsf{td}}) \end{array}$

Standard Model predictions:

$$BR(K^{+} \to \pi^{+} \nu \bar{\nu}) = (7.81^{+0.80}_{-0.71} \pm 0.29) \times 10^{-11}$$
$$BR(K_{L} \to \pi^{0} \nu \bar{\nu}) = (2.43^{+0.40}_{-0.37} \pm 0.06) \times 10^{-11}$$

Error on input parameters

'Pure theory' errors

[Brod, Gorbahn, Stamou, PhysRevD 83 (2011) 034030]

• New physics: large (O(10%)) deviations from SM possible in many NP models

Existing measurement

 $BR(K^+ \to \pi^+ \nu \bar{\nu}) = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$

18

NA62 numbers

10% relative error on Standard Model prediction

O(10%) enhancement from New Physics

60% relative error on measurement by E787/E949

10% relative error on NA62 measurement (SM)

The challenge

Signal region split by K⁺→π⁺π⁰

92% of BR(K⁺) outside of signal kinematic region

high rate

kinematic rejection (low mass tracking)

hermetic μ, γ veto

particle identification

The beamline

Primary SPS Beam

400 GeV/c proton 0.3 duty momentum

High intensity, unseparated secondary beam

75 GeV/c kaon momentum the μadding for the

Decay volume

 $\frac{6000}{(\beta\gamma c\tau = 560 \text{ m})} \quad \frac{100}{6000} \text{ K}^+ \text{ decaying in fiducial volume}$

NA62 detector

Signal selection

Beam	K+ ID'd in KTAG	Track matched in GTK		No veto from CHANTI	
Track	1 track re in S	econstru STRAW	ucted		
Particle ID	π+ ID'd in RICH	Calorimeter signals (CHOD, LKr, MUV1-3) compatible with π ⁺			
Photon veto	No γ like clusters in LKr		Noγlike LAVs,	Noγlike signals in LAVs, IRC, SAC	
Kinematics	Decay vertex in first 60m of decay volume			Pion momentum 5 < pπ < 35 GeV/c	

Background levels

Decay	events / year		
K⁺→π⁺vv [SM]	45		
$K^+ \rightarrow \pi^+ \pi^0$	5		
$K^+ \rightarrow \mu^+ v$	1		
K+→π+π+π-	< 1		
other 3 track decays	< 1		
K+→π ⁺ π ⁰ γ (IB)	1.5		
K+→µ+vγ (IB)	0.5		
$K+\rightarrow \pi^0 e^+(\mu^+)v$, others	negligible		
Total background	< 10		

Experimental status

Installing or Installed

KTAG LAV (8/12) LKr SAC Old CHOD Under construction

CHANTI STRAWS RICH IRC MUV Gigatracker

Di-lepton triggers any charge : any flavour

S

K+

L (FIN) V sensitivity

4 lepton events

π⁰ decays From K⁺→π⁺π⁰

21% Branching Fraction

L (FN) V limits summary

Mode	UL at 90% CL	Experiment	Reference	NA62 SES
K+→π+µ+e-	1.3 x 10 ⁻¹¹	E777 / E865	[PhysRevD 72 (2005) 012005]	4 x 10 ⁻¹³
K⁺→π⁺µ⁻e⁺	5.2 x 10 ⁻¹⁰	E 865		7 x 10 ⁻¹³
K⁺→π⁻µ⁺e⁺	5.0 x 10 ⁻¹⁰		[PhysRevLett 72 (2005) 2877]	7 x 10 ⁻¹³
K+→π⁻e+e+	5.0 x 10 ⁻¹⁰			2 x 10 ⁻¹²
K+ → π⁻µ+µ+	1.1 x 10 ⁻⁹	NA48/2	[PhysLettB 697 (2011) 107]	4 x 10 ⁻¹³
K⁺→µ⁺ve⁺e⁺	2 x 10 ⁻⁸	Geneva-Saclay	[PhysLett 62B (1976) 485]	4 x 10 ⁻¹²
K+→e⁻vµ+µ+	-	_	_	1 x 10 ⁻¹²
π ⁰ →µe	3.6 x 10 ⁻¹⁰	KTeV	[PhysRevLett 100 (2008) 131803]	2 x 10 ⁻¹¹

Conclusions

2007 R_k analysis

New measurement consistent with Standard Model Further studies possible: sterile v, medium-rare decays

$2014 \text{ K}^+ \rightarrow \pi^+ \text{VV}$

On track for 10% measurement of branching ratio Prospects for a wide rare and forbidden decay programme Kaon flux in 2014 ~ few % of nominal flux

NA62-Rk

Previous R_K measurements

- **1972 Bevatron:** $R_{K} = (2.42 \pm 0.42) \times 10^{-5}$ [PhysRevLett 29 (1972) 1274]
- **1975 CERN PS:** $R_{K} = (2.37 \pm 0.17) \times 10^{-5}$ [PhysLett B 55 (1975) 327]
- 1976 CERN PS (improved): $R_{K} = (2.51 \pm 0.15) \times 10^{-5}$ [PhysLett B 60 (1976) 302]

2008 PDG Average: $R_{K} = (2.447 \pm 0.109) \times 10^{-5}$

[PhysLett B 667 (2008) 1]

• 2009 KLOE: $R_K = 2.493 \pm 0.025_{stat} \pm 0.019_{syst} \times 10^{-5}$ [EurPhysJ C65 (2010) 703]

2010 PDG Average: $R_{K} = (2.493 \pm 0.031) \times 10^{-5}$

[JPhys G 37 (2010) 075021]

Kaon facilities : highlights

KTeV

Measured **direct CP violation** parameters in 2π decays of neutral kaons [PhysRevD 82 (2011) 092001]

Orka

Upcoming experiment to measure $K^+ \rightarrow \pi^+ vv$ from stopped kaons. Aiming for 5% measurement [arXiv:1305.7245v1]

E949

Made the first observation of K⁺→π⁺vv using stopped kaons [PhysRevLett 101 (2008) 191802]

KLOE (2)

Studies kaon physics at a ϕ factory at the DA ϕ NE e+e= collider [arXiv:1002.2572]

Golden Mode Theory

$K \rightarrow \pi v v$ theory

Standard Model

- Theoretical cleanness comes from **hard** (power like) GIM suppression. ٠
- Theoretical error is now dominated by parametric errors, after a complete analysis of two-loop electroweak • contributions. [Brod, Gorbahn, Stamou, PhysRevD 83 (2011) 034030]

Hard (power like) GIM $s \xrightarrow{\mathsf{v}} d \qquad \sim \frac{m_i^2}{M_W^2} \ln \frac{M_W}{m_i}$ $\cdot \text{ Up quark contributions}$

suppressed.

CKM and CPV

40

Grossman-Nir Bound

 $BR(K^+ \to \pi^+ \nu \bar{\nu}) = \kappa_+ |\xi X - P_{(u,c)}|^2$

$$BR(K^L \to \pi^0 \nu \bar{\nu}) = \kappa_L \,\mathfrak{Im}(\xi X)^2$$

For all complex numbers:

$$\Im \mathfrak{m} z \leq |z|$$

After corrections, this gives an upper limit on the ratio

 $10^{10} \times \mathrm{BR}(K^+ \to \pi^+ \nu \bar{\nu})$

NA62 Detector

Original CEDAR-W design

New readout

Charged anti-particle counter

Reject events with inelastic scattering in the GTK Tag beam halo muons near beam axis

Tracking detectors

5x103 $K^+ \rightarrow \pi^+ \pi^0$ kinematic rejection factor (via a cut on m^2_{miss})

Limited by: multiple scattering tails **Pile up in Gigatracker**

- views per
- 2 staggered planes per view to resolve L/R ambiguity

Particle identification

 μ/π separation required to suppress K $\rightarrow \mu \nu$ background 10-7

> Fe/scintillator hadron calorimeter **10-5** μ rejection inefficiency

EM / hadronic clusters discrimination

pico seconds

Ring imaging Cherenkov detector

2000 single anode PMTs

10-2 μ rejection (for K $\rightarrow \mu v$)

Hermetic Photon vetoing ----

MUV

1&2

Lkr

MUV

3

 $1 - \epsilon < 10^{-4}$ at 5 GeV

The NA62 Detector Information

NA62

Proposal: CERN-SPSC-2005-013

Technical design: NA62-10-07

RICH

AIPConfProc 1412 (2011) 161

NSS/MIC 2012 IEEE 2053

STRAW

JINST 5 (2010) C12053

NSS/MIC 2010 IEEE 1914

LAV

JINST 8 (2013) C01020

NSS/MIC 2010 IEEE 852

KTAG

CEDAR: CERN-82-13

GigaTracker

JINST 7 (2012) C03030

PoS VERTEX (2010) 40

Lkr

JINST 6 (2011) C12017

NA48: NuclInstMeth A 574 (2007) 433

NA62 Trigger Data Acquisition

Trigger and data acquisition

+ - T+W trigger

LKr MUV3 CHOD

at least N CHOD quadrants

hits in a least N MUV3 pads

at least N Lkr clusters with E > x GeV

LO trigger: $Q_1 \cap !(MUV_1) \cap LKr_1$ Important to reject K_{µ2} events

52)i-lepton Iriq Ors 640 kHz total can't collect all three track decays 10's kHz L0 rate L0 rate Dominated by $K^+ \rightarrow \pi^+ \pi^+ \pi^$ at least N LKr MUV3 CHOD quadrants hits in a least N MUV3 pads at least N Lkr clusters with E > x GeV $LKR_N(x)$ CHOD µe pair ee pair μμ paīr Q_2 $LKR_{1}(15)$ LKR₂(15) MUV₂ MUV₁