A NEDM measurement by using a spallation UCN source of He-II Y. Masuda (KEK), Sep. 9, 2013, PSI2013

1

We have placed He-II in a spallation neutron source

We have produced UCN

 $P = 4 \text{ UCN/cm}^3$ s at $E_c = 210 \text{ neV}$ for 0.4 kW p beam $T_s = 81 \text{ s}$ Phys. Rev. Lett. 108(2012)134801 240 s irradiation

26 UCN/cm³ at $E_c = 90$ neV,

75 ($_{\sim}E_{c}^{3/2}$) 180

losed

UCN

guide

Result of Ramsey resonance

EDM is obtained from a phase shift upon E reversal $\Delta d_{sta} = \frac{1}{2P_n E E_c \sqrt{N}} P_n$: UCN polarization, N : PUCN V cell

Effect of particle motion

Transverse fields, (DB_/Dz)r/2 and Exv/c² rotate upon particle motion

Effect of time dependent interaction Geometric phase effect

Phys.Lett. A376(2012)1347

 $H_{0} = -\boldsymbol{\mu} \cdot \boldsymbol{B}_{0} - \boldsymbol{d}_{n} \cdot \boldsymbol{E}$ $U(t) = \exp(-iH_{0}t/\hbar)$ $H = H_{0} + V(t)$ $V(t) = -\boldsymbol{\mu} \cdot \boldsymbol{B}_{0}(t)$

 $V(t) = -\boldsymbol{\mu} \cdot \boldsymbol{B}_{xy}(t)$ $= -\gamma s \cdot \left\{ \frac{\boldsymbol{E} \times \boldsymbol{v}(t)/c^{2} - (\partial B_{0z}/\partial z) \boldsymbol{r}(t)/2}{\boldsymbol{E} \times \boldsymbol{v}(t)/2} \right\}$ $U_{I}(t) = 1 + \left(\frac{-i}{\hbar}\right) \int_{0}^{t} dt' \sqrt{I(h')}$ $+ \left(\frac{-i}{\hbar}\right)^{2} \int_{0}^{t} dt' \int_{0}^{t'} dt'' V_{I}(t') V_{I}(t'') + \cdots$ $V_{I}(t) = e^{iH_{0}t/\hbar} \left\{ -\boldsymbol{\mu} \cdot \boldsymbol{B}_{yy}(t) \right\} e^{-iH_{0}t/\hbar}$

Exv/c2 · (DBo/Dz)r/2 cross terms induce false effect

S

ωL

GPE suppression of Xe co-magnetometer $U_{I}(t) = 1 + \frac{is_{z}}{\hbar} \frac{1}{4} \gamma^{2} \frac{E}{c^{2}} \frac{\partial B_{0z}}{\partial z} \int_{0}^{t} dt' \int_{0}^{t'} d\tau \cos(\omega_{0}\tau)$ $\{x(t')v_{x}(t'-\tau) - x(t'-\tau)v_{x}(t') + y(t')v_{y}(t'-\tau) - y(t'-\tau)v_{y}(t')\}$

UCN: Adiabatic regime $\omega_r \ll \omega_L$ $d_{afn} = -\hbar/4 \cdot (\partial B_{0z}/\partial z)/B_{0z}^2 \cdot v_{xy}^2/c^2$ $= 1x10^{-27} e cm$ at $\partial B_{0z}/\partial z = 1nT/m$, $B_{0z} = 1\mu T$ Atomic co-magnetometer: Non-adiabatic regime $\omega_r \gg \omega_L$ $d_{afXen} = \hbar/8 \cdot \gamma_n \gamma_{Xe} (\frac{\partial B_{0z}}{\partial z}) \frac{R^2}{c^2}$ $= \frac{8 \times 10^{-26} \text{ e cm}}{cm} \text{ at } \frac{R}{R} = 25 \text{ cm}}$

> $< r(t)v(t-\tau) > \rightarrow <<1$ for short mean free path λ r(t) is almost constant $v(t-\tau)$ rapidly changes

Diffusion velocity is in $\omega_r \ll \omega_{\perp} v_{xy}\lambda/(2R)^2 = 8Hz \ll \omega_{\perp}/2\pi = 120Hz$ at $\underline{B_{0z} = 10\mu T}$ Suppression [{ $v_{xy}\lambda/(2R)^2$ }/($\omega_{\perp}/2\pi$)]² d_{afXen} $\rightarrow 4 \times 10^{-28}$ e cm at 3 mTorr

Extracting polarized UCN

 $V_F(AI)$ is compensated with μB , and UCN transmission is enhanced UCN loss, hydrogen effect, at the AI foils is expected to be small

1	absorption	up-scattering	reflection
1 H	σ_{γ} = 0.33 b	σ_{inc} = 20 b	$b_{coh} = -3.74 \text{ fm}$
²⁷ AI	= 0.23 b	= 9.8 mb	= 3.45 fm
Fe	= 2.56 b	= 0.38 b	= 9.55 fm

nEDM Timeline

17

nEDM Timeline

18

nEDM Timeline

Thanks

T. Adachi, Y. Makita, H. Takahashi, K. Tanaka, (KEK), D. Nishimura (Osaka), I. Tanihata (Beihang, RCNP)

R. Picker, E. Pierre, Yunchang Shin, D. Ramsay (TRIUMF), S. Page (Manitoba), Momose (UBC), E. Korkmaz (UNBC), M. Barnes (CERN), R. Golub, E. Korobkina (North Carolina)