Experimental Search for atomic EDM in 129Xe using active nuclear spin maser

Yuichi ICHIKAWA
Tokyo Institute of Technology
Collaborators

Tokyo Institute of Technology

University of Winnipeg
 C.P.Bidinosti

Tokyo Metropolitan University
 T.Furukawa

KEK
 T.Ino

Hosei University
 Y.Matsuo

Tohoku University
 T.Inoue

Okayama University
 A.Yoshimi

RIKEN Nishina Center
 H.Ueno

Ritsumeikan University
 T. Fukuyama
Active spin maser
EDM measurement of \(^{129}\text{Xe} \) atom

- Stable isotope
 - Number density: \(10^{18} \sim 10^{19} \text{ cm}^{-3}\)
- Long coherence time
 - \(T_2 \sim 10^2 \text{ s}\)
- Nuclear spin: 1/2
 - Unique Zeeman splitting

Experimental upper limit:

\[|d^{(129}\text{Xe})| < 4.1 \times 10^{-27} \text{ ecm} \]

\[c.f. \, |d^{(199}\text{Hg})| < 3.1 \times 10^{-29} \text{ ecm} \]

EDM search under \(10^{-28} \text{ ecm}\)
Principle of EDM measurement

\[H = -\mu \cdot B - d \cdot E \]

Energy level of spin \(\frac{1}{2} \) system

\(\mu > 0, \ d > 0 \)

\(m = -\frac{1}{2} \)

\(B = 0 \quad E = 0 \)

\(m = +\frac{1}{2} \)

\[E = -\mu B - dE \]

\[\nu_+ = \frac{2\mu B + 2dE}{h} \]

\[\nu_- = \frac{2\mu B - 2dE}{h} \]

\[\Delta \nu = \nu_+ - \nu_- = \frac{4dE}{h} \]

\(d = 10^{-28} \) ecm, \(E = 10 \) kV/cm

\[\Delta \nu = 1 \) nHz \]
How to improve frequency precision?

- Repeat of Free-induction decay (FID) measurements

![Graph of transverse spin]

\[
\delta v_{\text{final}} = \frac{\delta v_{\text{ind}}}{\sqrt{n}} \propto \frac{1}{\sqrt{n}} \frac{1}{T \sqrt{T}} = T^{-1/2} \frac{T_m^{-1/2}}{T_m} \\
T_m = n \times T \\
T_m : \text{measurement time}
\]

- Consecutive measurement of spin precession

![Graph of transverse spin]

\[
\delta v_{\text{final}} \propto \frac{\delta \phi}{T_m} = T_m^{-3/2} : \left[\text{Fourier width} : \frac{1}{T_m} \right] \times \frac{1}{\left[\text{data points} : T_m \right]^{1/2}}
\]

Long-term measurement
Nuclear-spin maser (spin-coil coupling)

Static magnetic field: $B_0 \sim G$

Feedback field

Induced current: $I \propto nPQ$

Feedback coil L

Capacitor C

Pumping light

Oscillation condition

$$\frac{1}{\tau_{RD}} = \frac{1}{2} \gamma^2 \eta \mu_0 \hbar I[n] P_0 Q > \frac{1}{T_2}$$

$\nu \sim \text{kHz} \ (B_0 \sim G)$

Strong coupling between nuclear spin and feedback coil

M. G. Richards et al., JPB 21 (1988) 655: 3He spin maser

T. E. Chupp et al., PRL 72 (1994) 2363: 129Xe spin maser
Transverse polarization transfer: \(^{129}\text{Xe}\) nuclei → Rb atoms (re-pol)
“Active” nuclear-spin maser

“Optically coupled” spin maser
with a feedback field generated by optical spin detection

Maser oscillation at low fields (\(\sim\) mG)
Suppression of drifts in \(B_0\) \(\rightarrow\) Suppression of drifts in \(\nu\)

Maser oscillation of 129Xe
Setup for maser

Solenoid coil for static field
\[B_0 = 28.6 \text{ mG} \quad \text{(2.86 \mu T)} \]
\(\Leftrightarrow I_0 = 7 \text{ mA} \)

4-layer magnetic shield
Permalloy

Probe laser
Wave length: 794.76 nm
Width: \(\sim 10 \text{ MHz} \)
Power: 10 mW

Pumping laser
Wave length: 794.76 nm (Rb D1 line)
Width: \(\sim 10 \text{ MHz} \)
Power: 1 W

Gas cell
\(^{129}\text{Xe}, \, ^{3}\text{He}, \, \text{N}_2\)
Rb vapor
GE180 glass

Photo Diode

PEM

\(\frac{\lambda}{4} \) plate

20 mm
Setup for maser

4-layer magnetic shield

Compensation coil

Probe laser

Pumping laser
Long-term frequency drift

Determination precision of averaged frequency

$\Delta \nu \sim 10$ nHz

Long-term frequency drift

Long-term drift in mag. field at cell position

$\delta \nu \sim 1$ mHz

T. Inoue et al., Physica E 43 (2011) 847-850
$^3\text{He co-magnetometer}$
Principle of ^3He co-magnetometer

- Negligible EDM in ^3He
- *in situ* magnetometry
- Correlation in phase: $\Phi_{\text{Xe}}(t) = \frac{\gamma_{\text{Xe}}}{\gamma_{\text{He}}} \Phi_{\text{He}}(t)$
Spin polarization of 3He

GE180 spherical cell:
Low magnetic impurity
Low leakage of 3He

Checked by AFP-NMR measurement

Typically
$P(^3\text{He}) = 3\%$
$T_1(^3\text{He}) = 50\text{ hours}$

at $100\,^\circ\text{C}$
Concurrent operation of 129Xe/3He masers

- Spherical GE180 cell (129Xe: 1 Torr, 3He: 470 Torr, N$_2$: 100 Torr)
- Simultaneous spin detection & individual feedback of 129Xe/3He
- Succeeded in concurrent maser oscillation
- Determination precision of averaged frequencies for 129Xe/3He are both \sim100 nHz in 10^6 sec
- No correlation between $\nu(^{129}\text{Xe})$ and $\nu(^{3}\text{He})$
- Larger drift in $\nu(^{129}\text{Xe})$ than $\nu(^{3}\text{He})$
- Correlated with cell temperature

\[\frac{\gamma_{\text{He}}}{\gamma_{\text{Xe}}} \sim 3 \]
Frequency shift due to polarized Rb

Frequency shift of 129Xe/3He
due to contact interaction with polarized Rb

$$\Delta \nu \propto \kappa [\text{Rb}] P_{\text{Rb}}$$

Rb number density \hspace{1cm} Rb Polarization

Two-body factor κ_0

$$\begin{cases} \kappa_0 \text{Xe–Rb} = 493(31) \ [1] \\ \kappa_0 \text{He–Rb} = 4.52 + 0.00934T \ [2] \end{cases}$$

Frequency shift due to polarized Rb atoms
can not be removed by 3He co-magnetometer
Double-cell geometry

Cell is divided into Pumping section & Probe section

\[\Delta \nu_{\text{Rb}} \propto \kappa [\text{Rb}] P_{\text{Rb}} \]

- Rb number density
- Rb polarization

Advantages
- Reduce \(P_{\text{Rb}} \) at probe section
- Different temperature at pumping part & probe part

Difficulties
- \(T_1(^{129}\text{Xe}) \) vs diffusion
- Deterioration of maser signal due to reduced \(P_{\text{Rb}} \)
Maser oscillation with double cell

GE180 SurfaSil coated

Xe: 10 Torr/1.33 kPa
He: 470 Torr/62.65 kPa
N$_2$: 100 Torr/13.33 kPa
Rb

129Xe maser oscillation

- 129Xe maser + 3He FID measurements
- Frequency shift is reduced < 1/10 (90 mHz -> 8 mHz)
- Remaining shift due to Rb longitudinal repolarization
EDM measurement
Electric-field application test

- Gas pressure
 - 129Xe : 1 Torr
 - 3He : 470 Torr
 - N_2 : 100 Torr
- GE180
- SurfaSil coated

129Xe maser signal @ $E = 5 \text{ kV/cm}$ (Leak current : 70 pA)

![Graph showing sinusoidal waveform for 129Xe maser signal](image)
First run of EDM measurement using 129Xe active spin maser + 3He co-magnetometer has been conducted.
Future Perspective
To be improved

- Improvement in 3He polarization
- Improvement in T_2 for 3He
- Reduction of Rb longitudinal polarization
Reduction of Rb longitudinal polarization

Linearly polarized laser light is introduced into probe section

- Destroy Rb longitudinal polarization
- Monitor [Rb] through transmission

- Rb transverse polarization survives
Summary

- **Active spin maser**
 - Optical spin detection + artificial feedback
 - Determination precision of averaged frequency: \(~10\ nHz\)

- **Incorporation of \(^3\)He co-magnetometer**
 - Concurrent \(^{129}\)Xe/\(^3\)He maser oscillation
 - Frequency shift due to polarized Rb
 - Double-cell geometry

- **EDM measurement**
 - First trial using active \(^{129}\)Xe maser + \(^3\)He co-magnetometer

- **Future perspective**
 - Improvement in \(^3\)He polarization
 - Improvement in \(T_2\)
 - Reduction of Rb longitudinal polarization