Physics of fundamental Symmetries and Interactions – PSI2013 Paul Scherrer Institut, Switzerland, September 9-12, 2013

Experimental Search for atomic EDM in ¹²⁹Xe using active nuclear spin maser

Yuichi ICHIKAWA Tokyo Institute of Technology

Collaborators

Tokyo Institute of Technology

Y.Ichikawa, T.Sato, Y.Ohtomo, Y.Sakamoto, T.Suzuki, M.Chikamori, E.Hikota, H.Miyatake, T.Nanao, K.Suzuki, K.Asahi

University of Winnipeg C.P.Bidinosti *Tohoku University* T.Inoue

Tokyo Metropolitan University T.Furukawa *Okayama University* A.Yoshimi

KEK

T.Ino

Hosei University Y.Matsuo *RIKEN Nishina Center* H.Ueno

Ritsumeikan University T. Fukuyama

EDM measurement of ¹²⁹Xe atom

\bigcirc Stable isotope

- Number density: 10¹⁸ ~ 10¹⁹ cm⁻³

 \bigcirc Long coherence time

 $-T_2 \sim 10^2 \text{ s}$

ONuclear spin: 1/2Unique Zeeman splitting

Experimental upper limit :

 $|d^{(129}Xe)| < 4.1 \times 10^{-27} e^{Cm}$

M. A. Rosenberry et al., Phys. Rev. Lett. 86, 22 (2001)

c.f. |*d*(¹⁹⁹Hg)| < 3.1 × 10⁻²⁹ *e*cm

W. C. Griffith et al., Phys. Rev. Lett. 102, 101601 (2009)

EDM search under 10⁻²⁸ecm

Principle of EDM measurement

How to improve frequency precision?

Repeat of Free-induction decay (FID) measurements

Consecutive measurement of spin precession

Nuclear-spin maser (spin-coil coupling)

Strong coupling between nuclear spin and feedback coil

Optical spin detection

"Active" nuclear-spin maser

"Optically coupled" spin maser

with a feedback field generated by optical spin detection

Maser oscillation at low fields (\sim mG) Suppression of drifts in $B_0 \rightarrow$ Suppression of drifts in ν

Maser oscillation of ¹²⁹Xe

Setup for maser

Setup for maser

Compensation coil

4-layer magnetic shield

183

Probe laser

Pumping laser

Long-term frequency drift

Determination precision of averaged frequency

Long-term drift in mag. field at cell position

$$\delta v \sim 1 \,\mathrm{mHz}$$

T. Inoue et al., Physica E 43 (2011) 847-850

Principle of ³He co-magnetometer

- > Negligible EDM in ³He
- > *in situ* magnetometry
- > Correlation in phase : $\Phi_{Xe}(t) = \frac{\gamma_{Xe}}{\gamma_{He}} \Phi_{He}(t)$

Spin polarization of ³He

GE180 spherical cell : Low magnetic impurity Low leakage of ³He

Checked by AFP-NMR measurement

Typically $P(^{3}\text{He}) = 3 \%$ $T_{1}(^{3}\text{He}) = 50 \text{ hours}$ at 100 °C

Concurrent operation of ¹²⁹Xe/³He masers

- > Spherical GE180 cell (129 Xe: 1 Torr, 3 He: 470 Torr, N₂: 100 Torr)
- ➢ Simultaneous spin detection & individual feedback of ¹²⁹Xe/³He
- Succeeded in concurrent maser oscillation
- ➢ Determination precision of averaged frequencies for ¹²⁹Xe/³He are both \sim 100 nHz in 10⁶ sec

Correlation of frequency

- > No correlation between ν (¹²⁹Xe) and ν (³He)
- > Larger drift in ν (¹²⁹Xe) than ν (³He) Cf.) $\frac{\gamma_{\text{He}}}{\gamma_{\text{Xe}}} \sim 3$

Correlated with cell temperature

Frequency shift due to polarized Rb

Frequency shift of ¹²⁹Xe/³He due to contact interaction with polarized Rb $\Delta \nu \propto \kappa$ [Rb] P_{Rb} Rb number Rb Polarization density Two-body factor κ_0 $\begin{cases} \kappa_{0 \text{ Xe-Rb}} = 493(31) \ \kappa_{0 \text{ He-Rb}} = 4.52 + 0.00934T \ \kappa_{0 \text{ He-Rb}} \end{cases}$

[1] Z. L. Ma *et al.*, Phys. Rev. Lett. 106, 193005 (2011)
[2] M. V. Romalis *et al.*, Phys. Rev. A 58, 3004 (1998)

Frequency shift due to polarized Rb atoms can not be removed by ³He co-magnetometer

Double-cell geometry

Cell is divided into Pumping section & Probe section

Rb number density $\Delta \nu_{\rm Rb} \propto \kappa [\rm Rb] P_{\rm Rb}$ Rb polarization

Advantages

- > Reduce $P_{\rm Rb}$ at probe section
- > Different temperature at pumping part & probe part

Difficulties

- > $T_1(^{129}\text{Xe})$ vs diffusion
- > Deterioration of maser signal due to reduced $P_{\rm Rb}$

Maser oscillation with double cell

- ➢ ¹²⁹Xe maser + ³He FID measurements
- Frequency shift is reduced < 1/10 (90 mHz -> 8 mHz)
- Remaining shift due to Rb longitudinal repolarization

Electric-field application test

• Gas pressure 129 Xe : 1 Torr 3 He : 470 Torr N₂ : 100 Torr • GE180

SurfaSil coated

ITO transparent electrodes

¹²⁹Xe maser signal @ E = 5 kV/cm (Leak current : 70 pA)

First run of EDM measurement

¹²⁹Xe active spin maser + ³He co-magnetometer has been conducted

To be improved

>Improvement in ³He polarization

>Improvement in T_2 for ³He

➢ Reduction of Rb longitudinal polarization

Reduction of Rb longitudinal polarization

Linearly polarized laser light is introduced into probe section

- Destroy Rb longitudinal polarization
- Monitor [Rb] through transmission

Rb transverse polarization survives

Summary

Active spin maser

- Optical spin detection + artificial feedback
- Determination precision of averaged frequency: \sim 10 nHz

Incorporation of ³He co-magnetometer

- Concurrent ¹²⁹Xe/³He maser oscillation
- Frequency shift due to polarized Rb
- Double-cell geometry

EDM measurement

• First trial using active ¹²⁹Xe maser + ³He co-magnetometer

Future perspective

- Improvement in ³He polarization
- Improvement in T_2
- Reduction of Rb longitudinal polarization