E-Fields for Cryogenic nEDM

A J Davidson, J R Karamath and M Hardiman

1 Introduction
Most recent neutron edm experiments carry out magnetic resonance on polarised ultra-cold neutrons (UCN) stored at Room Temperature (RT). The sensitivity to an electric dipole moment is directly proportional to the strength of the E-field applied across the resonance, or Ramsey cell. To date, the maximum fields obtained in such RT experiments have been ~10kV/cm.

2 CryoEDM at ILL
In the CryoEDM experiment at ILL, the UCN are both produced and then measured in superfluid 4He. Given the known high dielectric strength of liquid 4He, there has been an expectation that larger E-fields than used at RT could be used in this and similar cryogenic experiments. However, to prevent thermal up-scattering of UCN, the helium needs to be held at ~0.6K, at which point the SVP is ~10⁻¹ mbar.

Figure 1 shows the double Ramsey cell currently in use at CryoEDM. The 250mm diameter BeO electrodes are separated by a 45mm BeO spacer and has been run at 0.6k under SVP at +10kV/cm and -13kV/cm. In the present arrangement the voltage limits of ~50-60kV are due to the feedthrough.

3 Dielectric Breakdown in Liquid 4He under SVP
A number of experiments have shown that the breakdown voltage, Vbd, in liquid 4He under SVP decreases significantly as the temperature, and hence pressure, are reduced below 4.2K. Our data in Fig. 2 were taken in a pumped bath cryostat and show a reduction in Vbd by a factor ~3 down to about 1.7K, at which point the hydrostatic pressure equals the SVP.

Proposal to Explain Vbd(P,T)

Once thermalised, ions and electrons in liquid 4He exhibit extremely low mobilities due to the formation of a solid He “snowball” around the ion and the formation of a “bubble” around the electron. This latter description is slightly misleading since it does not contain any gas – the term “exclusion void” might be more appropriate. Both of these entities can easily lose energy to low level excitations in the 4He and this leads to the high dielectric strength. Nevertheless, dielectric breakdown does occur in liquid 4He, essentially through an ionized gas “streamer” and it is proposed that this starts from an initial (gas) bubble which is formed at the surface of an electrode. If this “seed” bubble grows, then the gas within it is expected to become ionized.

The initial rapid increase in Vbd in our two-regime behaviour is thus attributed to the increased pressure suppressing the growth of the “seed” bubble. However, due to the differences in dielectric constant between ionized gas inside the bubble and the liquid, there are electrostrictive forces tending to elongate the bubble. This elongation has been shown to increase catastrophically above a given value of E-field [1] and we tentatively identify this onset with the change in regime of Vbd(P).

Maximum Attainable E-field in a Cryogenic Expt?

Figure 7 opposite summarises the values of E-fields attained in liquid 4He from the data reported here (blue and red circles, by Long et al [2] (blue and red squares) and at CryoEDM (blue triangle). In the latter case the electrodes were separated by a BeO spacer, as shown in Fig. 1. It is evident that fields in excess of 100kV/cm could be maintained across the liquid at 4.2K in realistic nEDM Ramsey cells and our data suggests that this could also apply at 0.6k, provided that the system is pressurized to ~1bar. However, it is important to note that this prediction takes no account of the potential problems associated with the necessary insulating spacers between the electrodes, and that these are expected to dominate at some point.

Future Plans for CryoEDM

On the basis of the work reported here, it is planned to modify CryoEDM to enable mild pressurization of the 4He liquid and to uprate the feedthrough and HV delivery system with the aim of reaching fields of 30kV at ~150kV by 2015. The inverted red triangle in Fig. 7 is this value and is a prediction.

[2] Long et al,