

New method to test a neutron electro-neutrality

Voronin Vladimir

Petersburg nuclear physics institute

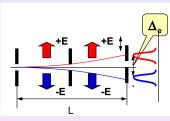
PSI-2013

Voronin Vladimir (PNPI)

New method to test....

PSI-2013 1 / 15

(日) (四) (三) (三) (三)


Motivation

Electro-neutrality of the free neutron is commonly accepted.

- The zero neutron electric charge is not a request of Standard Model.
- Zero neutron electric charge is the test of physics beyond the Standard Model.
 - Overall, only a few hints exist for physics beyond the Standard Model, and the neutrality of neutrons and atoms is such a hint.
 - Some models beyond the SM violates boson lepton (*B*-*L*) symmetry could accommodate a nonzero neutron charge $q_n = \varepsilon(B L) \neq 0$, but the charge of the hydrogen atom (which has B = L) would remain zero.
 - Some variants of theories with additional extra dimensions give the possibility to have non-zero neutron electric charge.

Neutron electric charge experiment¹

Parameters of the setup L = 9m, $\lambda = 17.5$ Å, E = 60 kV/cm.

Reached accuracy

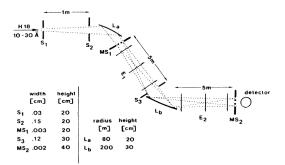
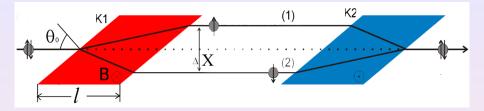
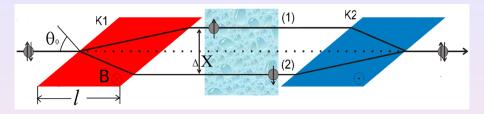



FIG. 1. The design of the deflection apparatus. MS_1 and MS_2 is a multislit system with 31 slits, 30 μ m wide, separated by 30- μ m-wide absorbing zones. For clarity the dimensions and angles of deflection are not to scale.

 $q_n = (-0.4 \pm 1.1)10^{-21} \cdot e$

SESANS method

Neutron beam polarization \mathbf{P} is directed perpendicularly to guiding magnetic field B. Neutron wave function can be written in form


$$\psi_{in} = \frac{1}{\sqrt{2}} \left(\begin{array}{c} e^{-\frac{i\varphi_0}{2}} \\ e^{+\frac{i\varphi_0}{2}} \end{array} \right),$$

here φ_0 - neutron spin direction in azimuthally plane. Let's consider P parallel to X-axis ($\varphi_0 = 0$) \Rightarrow $\mathbf{P} = (1, 0, 0)$

Voronin Vladimir (PNPI)

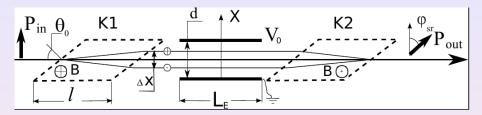
SESANS method - II

Let's apply $V_{sr}(x)$. The phase difference between these two eigenstates will be

$$\varphi_{sr} = (V_{sr}(x_0) - V_{sr}(x_0 + \Delta x))/\hbar \cdot \tau,$$

The neutron wave function on the exit of coil K2 will be

$$\psi_{out} = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{-\frac{i\varphi_{sr}}{2}} \\ e^{+\frac{i\varphi_{sr}}{2}} \end{pmatrix} \Rightarrow \mathbf{P} = (\cos\varphi_{sr}, \sin\varphi_{sr}, 0)$$


Voronin Vladimir (PNPI)

New method to test...

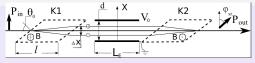
PSI-2013 5 / 15

Electric field

Electric field is applied $V_E(x) = E_0 \cdot x$. The spin rotation angle will be:

$$\phi_e = \frac{E_0 q_n \Delta x}{\hbar} \cdot \tau$$

The value of spatial splitting Δx is


$$\Delta x = \frac{\mu B}{E} \cdot l \cdot \tan \theta_0$$

Voronin Vladimir (PNPI)

New method to test....

PSI-2013 6 / 15

Numerical estimations

Neutron beam splitting

$$\Delta x = \frac{\lambda_n^2 l B \tan(\theta_0) \gamma m_n}{4\pi^2 \hbar}$$

Phase shift due to neutron electric charge

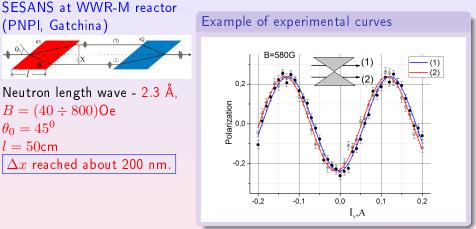
$$\phi_e = E_0 q_n l L_E B \tan \theta_0 \gamma \frac{\lambda_n^3 m_n^2}{8\pi^3 \hbar^3},$$

Numerical estimations show, that under the conditions (B = 0.1T, $L_E = 1$ m, l = 1m, $E_0 = 100$ kV/cm, $\tan \theta_0 = 10$, $\lambda_n = 10$ Å)

$$\phi_e = 2.6 \cdot 10^{15} \cdot e_n.$$

where $e_n = q_n/e$. The accuracy of $\Delta \phi_e \simeq 10^{-5}$ corresponds to potential gradient $\simeq 4 \cdot 10^{-16}$ eV/cm and neutron electric charge $\sigma(e_n) \simeq 4 \cdot 10^{-21}$.

Voronin Vladimir (PNPI)

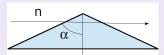


(PNPI, Gatchina)

 $B = (40 \div 800)$ Oe

 $\theta_0 = 45^0$ l = 50 cm

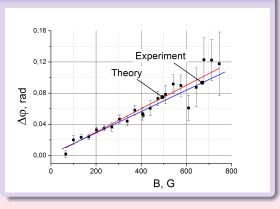
Measurement a neutron refraction by SESANS²


We use the quartz crystal prism with the vertex angle about 156° for neutron beam refraction.

²Thanks to Axelrod L.A. and Zabenkin V.N. Voronin Vladimir (PNPI) New method to test...

PSI-2013 8 / 15

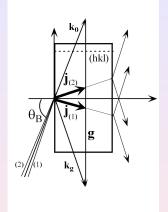
Neutron refraction in quartz prism



Value of phase shift due to refraction in prism

$$\Delta \varphi_r = \frac{V_0}{E} \frac{2\pi}{\lambda} \Delta x \tan \alpha$$

The used quartz prism $V_0\simeq 10^{-7}$ eV, $lpha=78^0$


The phase shift dependence on a value of magnetic field in main coils.

PSI-2013 9 / 15

Laue diffraction in perfect crystal

Symmetrical Laue diffraction. $\mathbf{j}_{(1)}$ and $\mathbf{j}_{(2)}$ are the neutron fluxes for two direction of incident beam.

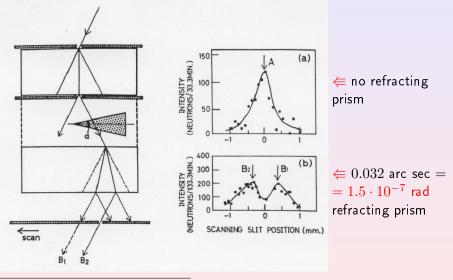
Voronin Vladimir (PNPI)

Effect of diffraction enhancement

The neutron in the crystal changes the momentum direction by the angle of Ω (by several tens degrees) while the incident neutron beam deflects by the Bragg width (within a few arc seconds)

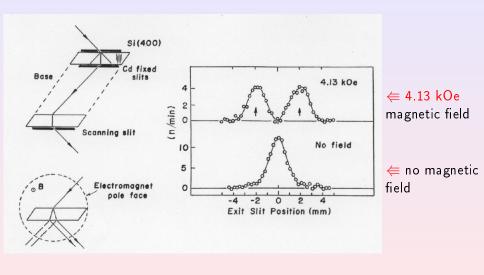
$$\Omega = \Delta \theta \cdot \frac{E}{2v_g} \Rightarrow \Delta \theta \cdot 10^5$$

The same phenomenon occurs then not direction but neutron energy is changed according to the

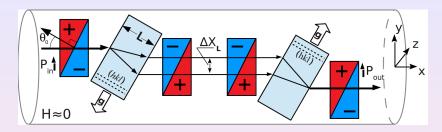

$$\Delta \theta = \frac{\Delta E}{2E} \tan \theta_B$$

New method to test....

PSI-2013 10 / 15


Measurement the neutron prism refraction³

³S.Kikuta et al., J. Phys. Soc. Japan, **39** (1975) 471


Change neuron length wave in magnetic field⁴

⁴A.Zeilinger, C.G.Shull, Phys.Rev.B 19 (1979) 3957
□ ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► < () ► <

SESANS + Laue diffraction

The values of neutron splitting

Laue diffr.+SESANS Standard SESANS $\Delta X_L = \frac{\mu B}{v_g} L \sin \theta_B \cdot \tan \theta_0 \iff \Delta X = \frac{\mu B}{E} \cdot l \cdot \tan \theta_0$ About $K_g = \frac{E}{v_g} \Rightarrow 10^5$ times more. $\overline{\Delta X_L}$ for silicon (220) and (100) quartz planes, L = 10 cm, $\tan \theta_0 = 1$ and $\theta_B = 65^0$ can be $\sim 20\mu$ m and $\sim 60\mu$ m for the B = 1 G. Veronin Vladimir (PNPl) New method to test... PSI-2013 13/15

Sensitivity of SESANS + Laue

Statistical sensitivity

$$\phi_e = \frac{E_0 e_n \Delta X_L}{\hbar} \cdot \frac{L_E}{v_n} = 3 \cdot 10^{17} \cdot e_n$$

For the (100) quartz plane (d=4.255Å, $v_g = 1.8 \cdot 10^{-8} \text{eV}$), $\theta_B = 65^0, L = 10 \text{cm}, \tan \theta_0 = 3, B = 100 \text{G}$

100 day of statistics accumulation ==

$$\Rightarrow \sigma(e_n) \simeq 3 \cdot 10^{-23}$$

Systematic

	ΔX_L	E_0	H_r	H_{lc}	$[v \times E_0]$	e_n
1	+	+	+		_	+
2	+	_	+	+	+	_
3	_	+	-	-	_	-
4	_	_	-	+	+	+

The combination of measurements (1-2)-(3-4)give us the effect due to e_n

Voronin Vladimir (PNPI)

New method to test....

Summary

New approach to test a neutron electroneutrality is proposed.

- It is based on using spin interferometer technique realised in the SESANS apparatuses
- The sensitivity of the proposed technique can be a few 10^{-21} e, that is about the best current accuracy
- The demonstration experiment to test the possibility to measure phase shift caused by neutron refraction in media was done. The results fully coincide with the theoretical expectation.
- There is a possibility to improve the method accuracy <u>on a few orders</u> based on a neutron Laue diffraction in a perfect crystal