Parity-odd Neutron Spin Rotation

A. T. Holley
Indiana University
for the NSR collaboration

Physics of Fundamental Symmetries and Interactions
PSI, September 10, 2013 National Institute of Standards and Technology \square

$\overline{\overline{\text { THE GEORGE }}}$
WASHINGTON
UNIVERSITY

Why Hadronic Weak Interactions?

We know there is a quark-quark Weak interaction:

$$
\begin{aligned}
& A_{\gamma}\left({ }^{180} \mathrm{Hf}^{*} \rightarrow{ }^{180} \mathrm{Hf}+\gamma\right)=-(1.66 \pm 0.18) \times 10^{-2} \\
& A_{h}\left(\vec{n}+{ }^{139} \mathrm{La}\right)=(9.55 \pm 0.35) \times 10^{-2}
\end{aligned}
$$

Enhanced PV signal from compound nuclear resonances
...but we don't fully understand observations because the low-energy (nonperturbative) limit of QCD controls how the HWI manifests itself. Need to study simpler systems:

Non-leptonic Flavor-changing
meson decays: EFT is effective, but, e.g., $\Delta \mathrm{I}=1 / 2$ rule not fully understood

$$
\mathrm{K} \rightarrow \pi \pi
$$

baryon decays: $\Delta S=1$ hyperon decay properties don't follow from QCD symmetries
Evidence of non-trivial QCD ground state dynamical phenomena? $\quad \Lambda \rightarrow N \pi$
Flavor-conserving NN Interactions $\frac{\mathcal{M}_{\text {weak }}}{\mathcal{M}_{\text {strong }}} \sim \frac{e^{2} / M_{\mathrm{W}}^{2}}{g^{2} / M_{\pi}^{2}} \sim 10^{-7}$ Hallmark is use of PV to single out weak part of interaction

- $\Delta S=0$: is strange quark or light quark dynamics in general responsible for hyperon decay?
- Sensitive to NC effects at low energy, probes the QCD ground state
- NN and few-body systems

SM Framework for HWI

Current-current form at low energy ($\Lambda_{\mathrm{QCD}}<\mathrm{q}<v$)

$$
\begin{aligned}
& \mathcal{H}_{\text {weak }}=\frac{G_{\mathrm{F}}}{\sqrt{2}}\left(J_{\mu}^{(\mathrm{C}) \dagger} J^{(\mathrm{C}) \mu}+\frac{1}{2} J_{\mu}^{(\mathrm{N}) \dagger} J^{(\mathrm{N}) \mu}\right)+\text { h.c. } \\
& J_{\mu}^{(\mathrm{C})}=\mathcal{U}_{u d} \bar{u} \gamma_{\mu}\left(1+\gamma_{5}\right) d+\mathcal{U}_{u s} \bar{u} \gamma_{\mu}\left(1+\gamma_{5}\right) s \\
& J_{\mu}^{(\mathrm{N})}=\bar{u} \gamma_{\mu}\left(1+\gamma_{5}\right) u-\bar{d} \gamma_{\mu}\left(1+\gamma_{5}\right) d-\bar{s} \gamma_{\mu}\left(1+\gamma_{5}\right) s-4 \sin ^{2} \theta_{\mathrm{W}} J_{\mu}^{\mathrm{em}} \\
& v \sim 246 \mathrm{GeV} \\
& \Lambda_{\mathrm{HAD}} \sim 1 \mathrm{GeV} \\
& \Lambda_{\mathrm{QCD}} \sim 200 \mathrm{MeV} \\
& m_{\pi} \sim 140 \mathrm{MeV} \\
& \Delta I=2 \longrightarrow J_{I=1}^{(\mathrm{C})} J_{I=1}^{(\mathrm{C})} \\
& \Delta I=1 \longrightarrow J_{I=1 / 2}^{(\mathrm{C})} J_{I=1 / 2}^{(\mathrm{C})}+J_{I=1}^{(\mathrm{N})} J_{I=1}^{(\mathrm{N})} \\
& \Delta I=0 \longrightarrow J_{I=0}^{(\mathrm{C})} J_{I=0}^{(\mathrm{C})}+J_{I=0}^{(\mathrm{N})} J_{I=0}^{(\mathrm{N})}+J_{I=1}^{(\mathrm{N})} J_{I=1}^{(\mathrm{N})}
\end{aligned}
$$

Calculation of the NN Weak Interaction ($q<\Lambda_{\mathrm{QCD}}$)
DDH: Model dependent, seven (non-elementary) meson-nucleon couplings: $\quad h_{\pi}^{1}, h_{\rho}^{0,1,2}, h_{\rho}^{1^{\prime}}, h_{\omega}^{0,1}$
EFT: Model-independent, QCD symmetries built in, perturbative expansion in q / Λ, pionful ($\mathrm{q} \sim 140 \mathrm{MeV}$) theory has six parameters

$$
\lambda_{s}^{0,1,2}, \lambda_{t}, \rho_{t}, \widetilde{C}_{6}^{\pi} \propto h_{\pi}^{1}
$$

Lattice QCD: Gold standard

$$
\begin{aligned}
& (I=1)^{+} \otimes L^{+} \otimes(S=0)^{-} \rightarrow{ }^{1} S_{0}, \ldots \\
& (I=1)^{+} \otimes L^{-} \otimes(S=1)^{+} \rightarrow{ }^{3} P_{0,1,2}, \ldots \\
& (I=0)^{-} \otimes L^{-} \otimes(S=0)^{-} \rightarrow{ }^{1} P_{1}, \ldots \\
& (I=0)^{-} \otimes L^{+} \otimes(S=1)^{+} \rightarrow{ }^{3} S_{1}, \ldots
\end{aligned}
$$

PV Observables in terms of DDH Parameters

	h_{π}^{1}	h_{ρ}^{0}	h_{ρ}^{1}	h_{ρ}^{2}	h_{ω}^{0}	h_{ω}^{1}	Status
$\begin{gathered} \phi_{\mathrm{PV}}, n^{4} \mathrm{He} \\ \sigma_{n} \cdot k_{n} \end{gathered}$	-0.97	-0.32	0.11	0	-0.22	0.22	will run at NIST
$\begin{gathered} A_{\gamma}, n p d \gamma \\ \sigma_{n} \cdot k_{\gamma} \end{gathered}$	-0.107	0	-0.001	0	0	0.004	running at SNS
$\begin{gathered} A_{p}, n^{3} H e \\ \sigma_{n} \cdot k_{p} \end{gathered}$	-0.189	-0.036	0.019	-0.001	-0.033	0.041	proposed at SNS
$A_{L}, p \alpha$ $\sigma_{p} \cdot k_{p}$	-0.333	0.140	0.047	0	0.059	0.059	$\begin{gathered} 1982- \\ 1985 \end{gathered}$
$\begin{gathered} A_{L}, p p \\ \sigma_{p} \cdot k_{p} \\ (45 \mathrm{MeV}) \end{gathered}$	0	0.074	0.074	0.030	0.067	0.067	$\begin{aligned} & 1991- \\ & 2003 \end{aligned}$
$P_{\gamma},{ }^{18} F$	4385	0	0	0	0	0	$\begin{gathered} 1978- \\ 1987 \end{gathered}$

- Recent experiments focus on simple NN and few-nucleon systems
- Many-body systems are also beginning to contribute via measurements of the nuclear anapole moment

The Current Experímental Landscape, DDH-Style

Weak NN iso-scalar, iso-vector coupling subspace

PV Spin Rotation in ${ }^{4} \mathrm{He}$

4K LHe
$f(0)=f_{\mathrm{PC}}+f_{\mathrm{PV}}\left(\vec{\sigma}_{n} \cdot \vec{k}_{n}\right)$
$\left\langle\vec{S}_{4}{ }_{\mathrm{He}}\right\rangle=0$

$$
\psi_{n} \sim \exp \left\{i\left[1+\frac{2 \pi}{k^{2}} \rho f(0)\right] \vec{k}_{0} \cdot \vec{z}\right\}
$$

Passage through the ${ }^{4} \mathrm{He}$ optical potential results in a helicity-dependent total phase
which causes rotation of the neutron polarization

$$
\phi_{ \pm}=\underbrace{k z\left(1+\frac{2 \pi \rho}{k^{2}} f_{\mathrm{PC}}\right)}_{\varphi_{\mathrm{PC}}} \pm \underbrace{2 \pi \rho z f_{\mathrm{PV}}}_{\varphi_{\mathrm{PV}}}
$$

$$
|\uparrow\rangle=\frac{1}{\sqrt{2}}[|+\rangle+|-\rangle] \longrightarrow \frac{1}{\sqrt{2}}\left[e^{i\left(\varphi_{\mathrm{PC}}+\varphi_{\mathrm{PV}}\right)}|+\rangle+e^{i\left(\varphi_{\mathrm{PC}}-\varphi_{\mathrm{PV}}\right)}|-\rangle\right]
$$

$$
\phi_{\mathrm{PV}}=\varphi_{+}-\varphi_{-}=2 \varphi_{\mathrm{PV}}=4 \pi \rho z f_{\mathrm{PV}}
$$

DDH prediction is $[-16,12] \times 10^{-7} \mathrm{rad} / \mathrm{m}$

PV Spin Rotation Measurement Technique

Two measurements produce a spin rotation angle $P A \sin \phi=\frac{I_{+}-I_{-}}{I_{+}+I_{-}}$ PV rotation $\sim 10^{-7} \mathrm{rad} / \mathrm{m}$, but earth's field would produce a rotation $\sim 10 \mathrm{rad} / \mathrm{m}$!

PV Spin Rotation Measurement Technique

The Neutron Spin Rotation Experiment

NSR-III: NIST NG~C Beam Líne

- NG-C beam line completed
- NG-C end station ready early 2014
- SM polarizer and analyzer arriving Oct.

The Neutron Spin Rotation Experiment

NSR-III Neutron Guides

- $10 \mathrm{~cm} \times 10 \mathrm{~cm}, 1.25$ and 2.0 nonmagnetic supermirror (NiMo / T) neutron guides
- 1 cm thick borofloat glass
- $\mathrm{M}=2.0, \mathrm{R}>90 \%$
- depolarization probability per bounce $<1 \%$

The Neutron Spin Rotation Experiment

NSR-III Ionization Chamber

- New ionization chamber constructed and will be tested at Indiana University in October
- Based on the radially and longitudinally segmented detector used for NSR-II

The Neutron Spin Rotation Experiment

NSR-II

$$
\frac{\mathrm{d} \phi_{\mathrm{PV}}}{\mathrm{~d} z}=[1.7 \pm 9.1(\text { stat }) \pm 1.4(\text { sys })] \times 10^{-7} \mathrm{rad} / \mathrm{m}
$$

2008 NIST Fundamental
Physics Beam Line NG-6

C. D. Bass et al., Nucl. Instrum. Meth. A612, 69-82 (2009).
A. M. Micherdzinska et al., Nucl. Instrum. Meth. A631, 80 (2011). W. M. Snow et al., Phys. Rev. C83, 022501(R) (2011).

NSR-II

$\frac{\mathrm{d} \phi_{\mathrm{PV}}}{\mathrm{d} z}=[1.7 \pm 9.1($ stat $) \pm 1.4($ sys $)] \times 10^{-7} \mathrm{rad} / \mathrm{m}$

NSR-II

Source	Uncertainty $(\mathrm{rad} / \mathrm{m})$	Method	Uncertainty $(\mathrm{rad} / \mathrm{m})$
L 4He diamagnetism	2×10^{-9}	calc	2×10^{-10}
L 4He optical potential	3×10^{-9}	calc	3×10^{-10}
Neutron E spectrum shift	8×10^{-9}	calc	8×10^{-10}
Refraction/reflection	3×10^{-10}	calc	3×10^{-11}
Non-forward scattering	2×10^{-8}	calc	2×10^{-9}
Polarimeter non-uniformity	1×10^{-8}	meas	$<1 \times 10^{-8}$
B amplification	$<4 \times 10^{-8}$	meas	$<4 \times 10^{-9}$
B gradient amplification	$<3 \times 10^{-8}$	meas	$<3 \times 10^{-9}$
PA/target nonuniformity	$<6 \times 10^{-8}$	meas	$<6 \times 10^{-8}$
Total	1.4×10^{-7}		$\leq 1 \times 10^{-7}$

$x 10$ in neutron flux
x 40 effective increase in polarized cold neutron flux from enhanced neutron transport

NSR-III Magnetic Shieldíng

- Three nested layers of μ metal shielding (two external and one internal); demonstrated to reduce B-field in target region to $<10 \mu \mathrm{G}$, a factor of ten improvement from NSR-II.
- In-situ de-gaussing, internal fluxgate magnetometers, trim coils, and active field cancelation supplement the passive shields.

NSR-II

$\frac{\mathrm{d} \phi_{\mathrm{PV}}}{\mathrm{d} z}=[1.7 \pm 9.1($ stat $) \pm 1.4($ sys $)] \times 10^{-7} \mathrm{rad} / \mathrm{m}$

NSR-II

Source	Uncertainty $(\mathrm{rad} / \mathrm{m})$	Method	Uncertainty $(\mathrm{rad} / \mathrm{m})$
L 4He diamagnetism	2×10^{-9}	calc	2×10^{-10}
L 4He optical potential	3×10^{-9}	calc	3×10^{-10}
Neutron E spectrum shift	8×10^{-9}	calc	8×10^{-10}
Refraction/reflection	3×10^{-10}	calc	3×10^{-11}
Non-forward scattering	2×10^{-8}	calc	2×10^{-9}
Polarimeter non-uniformity	1×10^{-8}	meas	$<1 \times 10^{-8}$
B amplification	$<4 \times 10^{-8}$	meas	$<4 \times 10^{-9}$
B gradient amplification	$<3 \times 10^{-8}$	meas	$<3 \times 10^{-9}$
PA/target nonuniformity	$<6 \times 10^{-8}$	meas	$<6 \times 10^{-8}$
Total	1.4×10^{-7}		$\leq 1 \times 10^{-7}$

$x 10$ in neutron flux
x 40 effective increase in polarized cold neutron flux from enhanced neutron transport

NSR-III Cryogenics

- Improved cryogenic design for reduced heat load, simpler assembly / disassembly, and more robust operation
- He re-liquefier removes necessity of LHe fills
- R\&D on new LHe pump to reduce target change time

NSR-III Cryogenics

Re-Liquefier

R\&D on New LHe Pump

- Cryomech pulse tube re-liquefier tested for three months of continuous operation
- Observed a liquefaction rate from warm gas of 12L / day
- Demonstrated ability to continuously maintain LHe volume comparable to spin rotation cryostat with little intervention under a heat load of $\sim 600 \mathrm{~mW}$

- Bellows pump demonstrated equivalent of 100 days of data-taking in water
- Pumping rate in water is ten times larger than previous centrifugal pump
- Cryogenics tests are underway

Additional Physics with our Apparatus

There is vigorous interest in placing constraints on spin- and momentum- dependent mesoscopic exotic forces:

A New Limit on Possible Long-Range Parity-odd Interactions of the Neutron from Neutron Spin Rotation in Liquid ${ }^{4} \mathrm{He}$
H.Yan and W. M. Snow*

Indiana University, Bloomington, Indiana 47408, USA and
Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408
(Dated: November 23, 2012)
Phys. Rev. Lett. 110, 082003 (2013)

Improved Limits on Long-Range Parity-Odd Interactions of the Neutron
E. G. Adelberger and T. A. Wagner

Center for Experimental Nuclear Physics and Astrophysics, Box 354290, University of Washington, Seattle, WA 98195-4290 (Dated: July 26, 2013)
arXiv:1307.6602 [hep-ex]

Such interactions can be generated by a new light vector boson X_{μ} coupling to a fermion

$$
\mathcal{L}=\bar{\psi}\left(g_{V} \gamma^{\mu}+g_{A} \gamma^{\mu} \gamma_{5}\right) \psi X_{\mu}
$$

Examples of the interaction potentials generated by such a coupling include

$$
V \sim g_{V} g_{A} \vec{\sigma} \cdot \vec{v} \quad V \sim g_{A}^{2} \vec{\sigma} \cdot(\vec{v} \times \hat{r})
$$

NSR Collaboration

Indiana University/CEEM
E. Anderson, W. Fox, J. Fry, C. Haddock, A. T. Holley, W. M. Snow

Universidad Nacional Autónoma de México Instituto de Física
L. Barrón Palos, M. Maldonado-Velázquez

Le Moyne College
C. D. Bass

Gettysburg College
B. E. Crawford, R. Malone

University of Kentucky
C. Crawford

The George Washington University
A. K. Opper

University of Washington
B. R. Heckel, H. E. Swanson

National Institute of Standards and Technology
H. P. Mumm, J. S. Nico

Bhabha Atomic Research Centre
Prakash Chandra Rout, S. Santra
Georgia State University
Churamani Paudel, M. G. Sarsour
Florida State University
S. van Sciver

NSR-III Input, Output, and Pí Coils

Pi-Coil design by Chris Crawford (University of Kentucky)

Input and output by Libertad
Barrón Palos (Universidad
Nacional Autónoma de México Instituto de Física)

