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Positronium (Ps) 

Positron 
electron 

- 
+ 

• Ps is the bound state of e- and e+ 

– The lightest hydrogen-like atom 

– Unstable, particle-antiparticle system 

– Simple, good target to study bound state QED 
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Positronium (o-Ps, p-Ps) 

e+ e- 

• Ortho-positronium (o-Ps) 

Long lifetime (142 nsec) 
o-Ps → 3γ (, 5γ, …) 
Continuous energy spectrum 

o-Ps 

Spin triplet 
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e+ e- p-Ps 

• Para-positronium (p-Ps) 

Spin singlet 

Short lifetime (0.125 nsec) 
p-Ps → 2γ (, 4γ, …) 
511 keV (= electron mass) γ rays 



Ps-HFS and Previous Measurements 
• Ps-HFS is the energy difference 

between o-Ps and p-Ps, about 
203 GHz (1.5 mm, 0.84 meV). 

• Previous measurements were 
performed in 1970s and 1980s, 
when there were no high power 
and frequency tunable sub-THz 
radiation source. 

• Use Zeeman splitting of about 3 
GHz by a static magnetic field of 
about 1 T.  

• It is difficult to prepare uniform 
magnetic field in large volume 
(~10cm) for Ps formation. 
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3.9σ (15ppm) discrepancy 

Exp. 
     203.388 65(67) GHz (3.3 ppm) 
O(α3) QED calc. 
     203.391 69(41) GHz (2.0 ppm) 
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• A large (3.9 σ, 15 ppm) 
discrepancy between theory 
and previous indirect 
measurements. 

• Possible reasons are 

 Non-uniformity of magnetic 
field 

 Underestimation of material 
(gas) effect 

• We plan to “directly” measure 
Ps-HFS using high power sub-
THz radiation. 



o-Ps 

p-Ps 

203GHz M1 transition 

Energy Level 

e+ e- 

e+ e- 
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Center value = Ps-HFS 

First Direct Measurement of Ps-HFS with New 
Sub-THz Technique 

• Drive stimulated emission from o-Ps to p-Ps using 203 GHz radiation. 

• Since p-Ps decays into 2γ promptly (125 ps), 2γ annihilation increases 
when Ps are exposed to 203 GHz radiation. 

• The natural transition rate is 1014 times smaller than decay rate of o-Ps. 
High power (> 10kW) sub-THz radiation is necessary.  

• Frequency has to be changed from 201 to 206 GHz in order to measure 
transition curve. 

Width 
→ p-Ps lifetime 



Experimental Setup 

Fabry-Pérot resonator 
Accumulate sub-THz radiation 

22Na β+ source & β+ detector 

γ-ray detectors 

β+ 
γ 

γ M2 

M1 

Ps 

Ps are formed in gas 
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Gyrotron 

• Electrons emitted from an 
electron gun are accelerated and 
move in a circle in the magnetic 
field and  go into the cavity 

• When their cycrotron frequency Ω 
= eB/mγ matches cavity resonant 
frequency 
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the energy of their cycrotron 
motion is converted to EM wave 
with frequency ω = ωc = Ω 

cavity 
SC 

magnet 

MIG 

window 

e- 

B 

Mode Converter 
• The only high power (100W – 1kW) 

coherent radiation source in sub-THz 
region, and monochromatic (<1MHz) 



Gyrotron “FU CW GI” 
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• Gaussian beam power ~ 350 W (5Hz, duty 30%) 

• Replacing gyrotron cavities of different sizes to change frequency 
without breaking vacuum of the MIG. 
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Fabry-Pérot Resonator 

C = 62% 
Γ = 1.7μm 
(FWHM) 

Reflected and transmitted power 

• Sharpness Γ = 1.7µm (Finesse = 430), and coupling C = 62%  
       Gain of the resonator ~ 85! (incident power ~ 350W) 11 

Au mesh mirror 

Cu concave 
mirror 

pyroelectric 
detector 

reflected 

tranmitted 

width = 200µm 
gap = 140µm 

incident 

water 
cooling 

[μm] 



Au mesh mirror 

Cu concave mirror 

LaBr3(Ce) crystal scintillators 

22Na e+ source (1MBq) 
Plastic scintillator (t 0.1mm) 

Form Ps by stopping e+ in gas 
(neopentane 1 atm) 

Ps Assembly and g-ray detectors 

203GHz  
Gaussian Beam 

Photomultipliers 
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b+ 

Signal = 2γ decay of o-Ps (monochromatic 511keV・back-to-back) 

γ 511keV 

γ 511keV 

e
+ 

e
- 



22Na e+ source and e+ detector 
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Plastic scintillator to 
detect e+ (t0.1 mm) 

22Na 1MBq e+ 

50mm 

Optical photons are 
guided to PMTs 

Photon yield of both PMTs 



γ-ray detectors & Fabry-Pérot resonator 
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Cu concave mirror 
Au mesh mirror 

γ 511keV 

γ 511keV 

e
+ 

e
- 

156 mm 

LaBr3(Ce) crystal scintillator 
- energy resolution FWHM 4%@511keV 
- time constant 16ns 
- time resolution 200ps (FWHM) @ 511keV 

energy spectrum 
of LaBr3(Ce) 



Ps-HFS transition@203.6GHz, 52kW 
• A measurement at a frequency point takes about 3 weeks (2 weeks for 

preparation, 1 weeks for data acquisition)  

• When Ps are exposed to 203 GHz radiation, o-Ps→3γ (tail at the left of 
511keV peak) decrease and o-Ps(→p-Ps)→2γ (511keV peak) increase. 
The 511keV peak during beam OFF is due to o-Ps+e-→2γ+e- (pick off 
annihilation). 
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203.6 GHz 
201.8 GHz 

Power & Frequency Dependence of 
Transition 
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• We have already measured transitions at 201.8 GHz, 203.6 GHz. The 
data points are consistent with the theoretical curve.  

• We are going to measure at three more freqencies to estimate Ps-
HFS with an accuracy of O(100ppm) within this year. 

Theoretical curve 
(assuming Ps-HFS = 203.4 GHz) 



Summary 
• There is a 3.9σ (15 ppm) discrepancy between the measured and the 

theoretical value of Ps-HFS (203.4 GHz). 

• All previous measurements are indirect measurement with static 
magnetic field. We plan to directly measure Ps-HFS for the first time by 
developing new sub-THz technique. 

• High power (>10 kW) and frequency tunability from 201 GHz to 206 
GHz are necessary, so we use a demountable type gyrotron “FU CW GI” 
and a high finesse Fabry-Perot resonator with a gold mesh mirror. 

• We have already measure transitions at two frequencies. In order to 
measure Ps-HFS, we will perform three more measurements at 
different frequencies within this year and measure Ps-HFS  and lifetime 
of p-Ps directly. 

• Precision (O(ppm)) measurement requires 

 0.1% accuracy of power estimation (need development of THz detector) 

 Upgrade Ps assembly to improve statistics and reduce systematics (e.g. use 
slow positron beam and make Ps in vacuum) 17 


