





### The new source for ultracold neutrons at TRIGA Mainz: latest results

M. Beck<sup>1</sup>, K. Eberhardt<sup>2</sup>, G. Hampel<sup>2</sup>, W. Heil<sup>1</sup>, R. Kieser<sup>1</sup>, Fabian Kories<sup>1</sup>, T. Reich<sup>2</sup>, I. Sobolev<sup>1,2</sup>, N. Trautmann<sup>2</sup>, Jan Peter Karch<sup>1</sup>

<sup>1</sup> Inst. of Physics, University Mainz
<sup>2</sup> Inst. of Nuclear Chemistry, University Mainz



JG U

## **Outline:**

- TRIGA Mark II Reactor with pulsed mode
- The new UCN source at beam port D
- Measurements during the last year
  - Heat load and its influence on the converter quality
  - Measurement of the thermal neutron flux
  - > UCN density measurements
  - > MC Simulations
- Summary and Outlook

#### **TRIGA Mark II Reactor with pulsed mode**



September 10th, 2013

Talk for the 3<sup>rd</sup> Workshop of PSI 2013 by Jan Peter Karch, Inst. of Physics, Uni. Mainz

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

#### The new UCN source at beam port D



September 10th, 2013



#### The new UCN source at beam port D



September 10th, 2013



# Measurements during the last year

#### Heat load and its influence on the converter quality





Source of heat load



September 10th, 2013

#### Heat load and its influence on the converter quality



September 10th, 2013



#### Heat load and its influence on the converter quality







September 10th, 2013

Heat load reduce the UCN yield in the case of *no and/or*  $sD_2$  *pre-moderator*. With a  $H_2$  or  $CH_4$  pre-moderator there is no visible influence, even after 100 reactor pulses.



September 10th, 2013

#### Measurement of the thermal neutron flux



September 10th, 2013

Talk for the 3<sup>rd</sup> Workshop of PSI 2013 by Jan Peter Karch, Inst. of Physics, Uni. Mainz

JOHANNES GUTENBERG

JGU

#### Thermal neutron fluence versus UCN yield

JGU



September 10th, 2013

#### **UCN density measurements**



September 10th, 2013

#### UCN density measurements: glass guiding system

JOHANNES GUTENBERG UNIVERSITÄT MAIN



Glass tubes coated with NiMo 85/15 in our sputter facility



September 10th, 2013

#### **Results from the different measurements:**



September 10th, 2013

#### **Results from the different measurements:**



September 10th, 2013

#### **MC Simulations**

September 10th, 2013

JGU



ndet 63

elapsed

12.6 s

Talk for the 3<sup>rd</sup> Workshop of PSI 2013 by Jan Peter Karch, Inst. of Physics, Uni. Mainz

detector

#### **MC Simulations**

JGU

#### **Results from simulations**



#### **MC Simulations**

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

JGU





September 10th, 2013



In total, we can report that the UCN source at the TRIGA Reactor Mainz (beam port D) is a powerful source for UCN experiments: <u>stable operation conditions</u> and <u>room for</u> <u>increasing the UCN yield</u>.



In total, we can report that the UCN source at the TRIGA Reactor Mainz (beam port D) is a powerful source for UCN experiments: <u>stable operation conditions</u> and <u>room for</u> <u>increasing the UCN yield</u>.



September 10th, 2013



JOHANNES GUTENBERG UNIVERSITÄT MAINZ



# Thank you for your attention!

September 10th, 2013