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Abstract. It is shown that µSR-technique allows to study appearance of ferromagnetic
ordering in nanocrystal films of ferromagnetic metals – so called “scale” phase transition. A
relationship of a microscopic (local) field with macroscopic characteristics just as an external
magnetic field, average magnetization and saturation magnetization is determined in a model
of the nanocrystal film consisting of crystallographically ordered grains separated by disordered
areas. Expressions for behaviour of a muon spin polarization ensemble in this kind of structures
are obtained in cases of fast diffusing and nondiffusing muons. It is shown that experiments
with “slow” positively charged muons allow to measure all parameters of this kind of structures
and obtain important information for the study of phase transition physics.

1. Introduction
Magnetic nanocrystalline metals are of interest for µSR-technique since using positive muons and
neutron difraction possess real possibilities to study their bulk properties1. Possible applications
of µSR-technique for study nanocrystalline ferromagnetic materials were still mentioned at
2000-th [1]. Nevertheless, no serious experimental researches were carried out yet. There was
emphasized that at least two problems in the fundamental physics of magnets could be solved for
nanostructured ferromagnets. One of them is the problem of specific “scale” phase transitions,
when an existence of a spontaneous magnetization depends both on temperature and sizes of
a crystal. The mechanism of this size-induced phase transition is being actively studied (see,
e.g. [2] - [4]). Currently, materials with grain sizes too small to exhibit ferromagnet properties
are called superparamagnets. The second problem is related with the structure and magnetic
properties of domains in nanostructures. They should be strongly differ from the respective
characteristics of “ordinary” polycrystalline ferromagnets. Really, both theory and experiments
show that a microcrystalline grain (102−4 ·102 Å) should be a single domain. The characteristic
thickness of domain walls in a bulk sample2 is d ∼ 10 − 30 Å, which is of the same order of
magnitude as the thickness of the intercrystalline amorphous interface. Thus, the concept of
magnetic domains and domain walls in nanocrystals differs from the observed for macroscopic
polycrystals. In our case we need to consider magnetized regions without domain grains in a

1 Nanocrystalline metals are conventionally accepted to be polycrystals with grain sizes of 10–400Å.
2 The characteristic thikness of domain walls depends on the ratio of exchange and magnetocrystalline anisotropy
energy scale. The presented values are correct for ferromagnets under consideration.



nonmagnetic medium. Hence, the macroscopic field Bdom inside a crystallographically ordered
grain and its dependence on the external magnetic field B should differ significantly from the
properties of macroscopic samples.

Opportunities of the µSR-technique for studying ferromagnetic nanostructured thin films are
represented in this report.

2. Behaviour of muon spin polarization
Let consider a nanostructured film consists of crystallographically ordered grains separated by
disordered regions. Spontaneous magnetization can arise only in ordered regions. Therefore, the
local field on a muon depends on wether the muon stops in a grain interstice or in an intergrain
region. Let consider a situation when a spontaneous magnetization does not equal to zero. Thus
the spin polarization of an ensemble of muons can be written as the sum

P(t) = Pcr(t) + Pnc(t), (1)

where Pcr(t) and Pnc(t) are the polarization of the fraction of muons stopped in grains and in
intergrain regions, respectively.

For a non-diffusing muons, the polarization is given by well-known expression (see e.g. [5])

Pi(t) = µik(t)Pk(0) (2)

where the tensor µik(t) is

µik(t) = nink + (δik − nink) cos γµbµt + eiklnl sin γµbµt (3)

Here bµ is the local field exerted on the muon, γµ = 13.554 kHz/G is the gyromagnetic ratio
and n = bµ/|bµ| is the unit vector along the magnetic field.

The local field acting on a muon in a grain and an intergrain region differ significantly. We
will be interesting in at first the field in a crystallographically ordered grain. In general, by
separating a Lorentz sphere around the muon position, we can write [5, 6]:

bµ = B− 8π

3
M + bdip + Bcont, (4)

where Bcont is the contact field induced by electrons and bdip is the microscopic field induced
by the oriented magnetic dipoles inside the Lorentz sphere. The contact field can always be
written as Bi cont = KikBk. In cubic crystals, we can set Kik = δikK. Therefore, the contact
field causes only an isotropic Knight shift3.

In an intergrain region, the spontaneous magnetization is equal to zero (Mnc = 0), hence,
the dipole fields bdip could be induced only by the disordered nuclear magnetic moments. These
fields cause inhomogeneous line broadening, which can be adequately described by a Gaussian in
the case of nondiffusing muons and a simple exponent for rapidly diffusing muons (see e.g.,[5, 7]).
Thus, the behaviour of the muon spin polarization for integrain regions is controlled by the local
magnetic field bµ = 〈B〉 + δb, where δb is the static field inhomogeneity. The characteristic
scale of the field inhomogeneity in the intergrain region is determined by the magnetization of
grains and the distance between them. Thus, the polarization precession frequency of muons in
the intergrain fraction allows to determine the average magnetic field in the film. In the case of
nondiffusing muons a Gaussian exponent allows to determine the characteristic scale of the field
inhomogeneity, σ ∼ γµ〈δb2〉/|〈B〉|. In the case of diffusing muons depolarization rate depends

3 For the simplicity, we can omit the Knight shift in what follows, although it can make an appreciable contribution
in some cases.



on a diffusing rapid λ and in the fast diffusing limit becomes negligibly small. It is known that
muon can diffuse rapidly in polycrystal samples (see e.g. [5] Ch.5 and references therein). But
an irregular structure of an amorphous intergrain region differs from a structure of polycrystal
samples. So, we can assume that a diffusion of a muon in intergrain regions is improbable.

If a crystallographically ordered grain has a nonzero spontaneous magnetization, the
microscopic dipole field is induced by the ordered electron magnetic moments. In this case,
inside a Lorentz sphere, this field can always be written as [5, 6]

bi dip = −4π

3
Mi + aikMk, (5)

where the tensor aik depends on the type of interstice at the center of which the field is
determined. Calculations showed (see e.g.,[5, 6]) that aik = δik4π/3 in an fcc Ni lattice; hence,
the microscopic dipole field is zero, bdip(fcc) = 0.

In an hcp Co lattice, the dipole field is also weak but is nonzero and has different values in
crystallographically nonequivalent interstices. If we direct the z axis along the hexagonal axis,
we have

δah
xx = δah

yy = ∆/2, δah
zz = −∆ in octahedral interstitice,

δat
xx = δat

yy = −∆, δat
zz = 2∆ in tetrahedral interstice, (6)

where ∆ ≈ 0.1. So, the dipole field can be written as bdip(hcc) = δaikMk. Therefore, we can
decide the dipole field bdip ¿ M .

The more complicated picture is observed in a bcc Fe lattice, where the dipole field is large
and depends not only on the interstice type but also on the direction of the magnetization vector
M. The components of the tensor aik(bcc) in the principal axes are [5, 6]

ah
xx = ah

yy = −1.165, ah
zz = 14.9 in octahedral interstice,

at
xx = at

yy = 5.707, at
zz = 1.152 in tetrahedral interstice. (7)

Hence, the local field on a muon in a bcc lattice is given by

bµ i(bcc) = Bi − 4πMi + aik(bcc)Mk. (8)

The local field acting on a muon depends on the direction of the magnetization vector in
the grain (see Eq. (5)), the polarization fraction of muons that stop in the crystallographically
ordered grains should be defined by averaging over all possible orientations of the principal
crystallographic axes.

Let us represent the local field acting on a muon as the sum of the two components parallel
and perpendicular to the film plane b = b‖+b⊥. Than, the polarization components are defined
as

P⊥ = 〈b‖
b

eıωt〉, P‖ = 〈b⊥
b

sinωt〉, ω = γµb = γµ

√
b2
‖ + b2

⊥ (9)

The preexponential factors (direction cosines) depend on whether the external field is
perpendicular or parallel to the film plane.

3. Hierarchy of fields
To determine the local field acting on a muon implanted into a target, we need to find the
microscopic field in the sample. At first, the hierarchy of fields in films of nanostructured
ferromagnetic metals should be refined. As for a multidomain ferromagnet, in addition to
macroscopic fields in each grain M, B, H and the external with the respect to entire sample B
we need to introduce average macroscopic fields in the sample. These fields are the results of
an averaging of all mentioned above macroscopic fields and the magnetization over all grains



and intergrain regions, 〈B〉, 〈H〉 〈M〉. The last parameters are determined in macroscopic
experiments. The same parameters determine the field acting on a muon in a disordered
intergrain region of the sample.

Let us denote the demagnetization factors of the film as Nik and write the relations between
the average fields and the external field in the form

Bi = 〈Hi〉+ 4πNik〈Mk〉, 〈B〉 = 〈H〉+ 4π〈M〉. (10)

Let the z axis of the coordinate system associated with the film be perpendicular to the film
plane. Since, by definition, the film thickness d is much smaller than its linear dimensions L, we
have Nzz ≡ N⊥ ≈ 1 and all other components are negligibly small.

If the external field is perpendicular to the film plane B‖z, we have

Bz ≡ B = 〈Hz〉+ 4π〈Mz〉, 〈Hpl〉 ≈ 0, (11)

where Hpl are the vector H components lying in the film plane. From the relation (10) we obtain

〈Bz〉 = B, 〈Bpl〉 ≈ 4π〈Mpl〉. (12)

If the external field lies in the film plane B⊥z, we have

〈Hz〉+ 4π〈Mz〉 = 0, 〈Hz〉 = −4π〈Mz〉, 〈Hpl〉 ≈ B (13)

and the average induction is given by

〈Bz〉 = 4π〈Mz〉, 〈Bpl〉 = B + 4π〈Mpl〉. (14)

In the accepted model of the film a nanocrystal grain is a single-domain particle. Therefore,
in contrast with the situation in an ordinary ferromagnet, each grain has no domain wall and is
in both the external (homogeneous) field B and the field induced by the magnetized grains of
the film.

For each grain (in the form of ellipsoid) we can write a relation similar to Eq. (10), 〈Bi〉 =
Hi + 4πnikMk, where nik are the grain demagnetization factors. Analytical expressions could
be obtained in the approximation of oblate ellipsoids, when n‖ = nzz ≈ 1, n⊥ = 1− n‖ ¿ 1.

If the external field is perpendicular to the film plane, Eqs. (12) give

〈Bz〉 ≈ B, Hz = B − 4πMz Hpl = 〈Bpl〉 = 4π〈Mpl〉, Bpl = 4π
(〈Mpl〉+ Mpl

)
. (15)

If the external field lies in the film plane, we obtain

Hz = −4πMz, Hpl ≈ 〈Bpl〉 = B + 4π〈Mpl〉 Bz = 0, Bpl = B + 4π
(〈Mpl〉+ Mpl

)
. (16)

Thus, to determine the fields, we should determine the direction of the magnetization vector M
in each grain and 〈M〉 in the film. The local field was obtained in [8] in the approximation when
the ordered grains are considered as oblate ellipsoids.

4. Muon spin polarization description
We can see that the local field acting on a muon (see Eqs. (12) and (16)) could be represented as a
sum of two items, one of them is a constant and the other depends on a magnetization orientation
in a grain. An averaging of a muon spin polarization overall possible grain orientations leads
up to an effective depolarization in accordance with Eq. (9). In a case of strong external field
(B À M) a precession frequency of a muon spin polarization could be written as a sum of



two items too, ω = ω0 + ω(ϑ), where ϑ is the angle between the grain magnetization and the
external field. At this approach only the transverse component of a muon spin polarization does
not equal to zero, and it can be approximately written in a form

P⊥ = 〈bz

b
e−ıγµbt〉 ≈ e−ıω0t〈e−ıω(ϑ)t〉 = e−ı(ω0+∆ω)te−σ2t2 , (17)

Here the frequency shift ∆ω and the depolarization rate σ are determined by both the
grain magnetization value and the muon interstitial position. Analytical expressions for these
important parameters were obtained in [8] in cases of rapidly diffusing and nondiffusing muons.

In the case of fast diffusing a muon spin polarization behaviour in fcc and bcc lattices is
practically the same. To within terms quadratic in M/B the precession frequency ω0 and its
shift ∆ω are given by

b0 = B − 8π

3
M +

1
2

(
4π

3

)2 M2

B , ∆ω = γµ
1
63

2π

3
M

(
M

B
)2

. (18)

The second moment σ2
diff ∝ (M/B)2 is rather small and it is unlikely that it can be measured in

experiments.
In the case of nondiffusing muons one can obtain the more detail information. In a bcc lattice

of ferromagnet belongs to the “easy axis” type (e.g., Fe) the precession frequency and its shift
are determined by

ωbcc
0 = γµ(B − (2π +

a⊥
2

)M), ∆ωbcc = −1
3
γµdM

[
1−

(
2d− 41

28
β

)
2M

15B
]

, (19)

and the second moment
σ2

nd =
7
30

(γµdM)2 . (20)

Here a‖ and a⊥ are the components of the tensor aik defining the dipole field, d = (a‖ − a⊥)/2,
β is the magnetic anisotropy parameter.

The behaviour of the polarization of nondiffusing muons in uniaxial ferromagnets is similar
to that presented above for cubic ferromagnets (19)–(20)

ωhcp
0 = γµ

[
B −

(
8π

3
− ∆

2

)
M

]
, ∆ωhcp = −1

2
γµM∆

[
1− (

β +
3
2
∆

)4M

5B
]

,

σ2
nd =

21
40

(γµM∆)2 . (21)

5. Conclusion
The formulas presented in this report show that the µSR-technique gives the opportunity
to determine the magnetization in a grain by measuring the precession frequency and the
depolarization rate and to reveal the existence of muon diffusion in the crystallographically
ordered fraction of a sample. In the case of nondiffusing muons in a crystallographically ordered
grain the precession frequency measurement allows one to determine the magnetic anisotropy
constant, which is of great importance in the physics of the phenomenon under consideration.
The measurement of the depolarization rate of the muon spins precessing at the frequency
corresponding to the average magnetic field of the film allows determination of the characteristic
scale of the magnetic field inhomogeneity in the disordered intergrain region. The ratio between
the precession amplitudes of the two fractions of muons allows to determine the ratio of the
volumes of the paramagnetic and ferromagnetic phases of the sample. In addition, the local



fields induced by nuclear magnetic moments can be taken into account separately using the well
known approaches for normal metals [5]. We note that all stable isotopes of Fe and Ni, except
57Fe (2.21%) and 61Ni (1.25%), have zero spins (see e.g., [9]) and, hence, experiments with these
widespread magnets are preferred.

Last experiments [10]-[14] showed that low-energy muons (LE-µSR) give opportunities to
study magnetic properties and inhomogeneity of thin superconducting films. This LE-µSR
technique has a scale resolution up to 10 nm and can be applied successfully to solve the
fundamental problem of magnetic scale phase transitions in ferromagnets too. Simultaneous
measurements by macroscopic methods (see e.g., [11]) would make it possible to obtain complete
information on the physics phase transitions in nanocrystalline ferromagnetic films.
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