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Introduction

The interplay of magnetism and superconductivity is one of the central topics in the contemporary studies on ferropnictides. Of particular interest within the AFe,As, compounds [1-3] is the EuFe,(As _Py)-
system because of two reasons: Firstly, the substition of As by P is (nominally) isovalent thus superconductivity is not introduced by extra charge carriers and secondly, it contains a magnetic rare earth
element on the A-site. Previous studies reported that the Fe AFM ordering and the accompanying structural transition from tetragonal to orthorhombic is suppressed upon P substitution and eventually
vanishes prior to the appearance of a superconducting dome [4-7]. In contrast, pressure studies demonstrated the presence of a precursory structural and Fe AFM transition above T4 between p = 0.4 and
0.8 GPa [8,9] but conclude that the SDW ground state is differently affected by x and p. Only recently, Nandi et al. [10] showed the existence of a small but finite orthorhombic splitting reminiscent of weak
Fe ordering [11] below 50K in a superconducting (Tg:=25K) single crystal with x=0.15 at ambient conditions.

Up to now, no comprehensive microscopic study of the (T-x) electronic phase diagram on single crystals without any explicit symmetry-breaking forces is available. In view of this gap, this work was carried
out and emphazises further microscopic studies of single crystalline EuFe,(As,.,P,), in the full temperature range to confirm our findings and improve the understanding of the precursory (T>TE) Fe order
and its possible importance for the appearance of superconductivity. Our ZF-MuSR data for x=0.13 is not conclusive because of insufficient sample mass (~10mg) and therefore not shown here.
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