

Magnetic Order and Spin Dynamics in CdCu₂(BO₃)₂ investigated by ¹¹B NMR and ZF-µSR

K.-Y. Choi¹, W.-J. Lee¹, S.-H. Do¹, S. W. Yoon², Z. H. Jang³, B.J. Suh², J. H. Lee⁴, A. P. Reyes⁵, P. L. Kuhns⁵, and H. Luetkens⁶

¹Department of Physics, Chung-Ang University, Seoul, Republic of Korea ²Department of Physics, The Catholic University of Korea, Bucheon, Republic of Korea ³Department of Physics, Kookmin University, Seoul, Republic of Korea ⁴Experimental Systems Division, RISP, IBS, Daejeon, Republic of Korea ⁵NHMFL, Florida State University, Tallahassee, FL 32310, USA ⁶Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, Switzerland

Shastry-Sutherland Lattice

Shastry-Sutherland Lattice (SSL)

- \rightarrow intradimer coupling interaction J + interdimer coupling constant J'
- \rightarrow When J'/J < 0.7, a ground state is an exact product of singlets.

$SrCu_2(BO_3)_2$ -

Experimental Realization of SSL with J'/J=0.63

- → Proximity to a quantum critical point
- → Chemical or hydrostatic pressure might induce a transition to a long-range ordered state.
- → One possible way to tune magnetic couplings is the substitution of Sr by Cd.

¹¹B NMR results

- ◆ Two different Boron sites (11B : I = 3/2, $\gamma/2\pi = 13.655$ MHz)
- lacktriangle Magnetic shift $K(\%) \rightarrow$ Clogston-Jaccarino plot $K_S(T) = K_{Chem} + \frac{A_{hf}}{N_A \mu_B} \chi_{spin}(T)$ $A_{hf} = 0.047(5) \text{ T}/\mu_B \text{ and } K_{Chem} = -0.0037 \text{ T}/\mu_B$
- $1/T_1$ diverges at T_N and flattens out below $T^* = 6.5$ K. $1/T_2$ has a broad maximum around $T^* = 6.5$ K. --> Presence of magnetic anomaly in an ordered state
- ◆ The averaged dynamic susceptibility

$$\frac{1}{T_1 T} \propto (T - T_N)^{-\alpha}$$
 with $T_N = 9.92(9)$ K, $\alpha = 0.57(8)$.

SrCu₂(BO₃)₂ vs CdCu₂(BO₃)₂

SrCu₂(BO₃)₂: tetragonal structure (I-42m) - Spin dimer with a gap of Δ =33 K

CdCu₂(BO₃)₂: monoclinic structure (P2₁/c) - AFLRO $T_{\rm N}$ =9.8 K

 \rightarrow a dilution effect

(iii) Θ hardly varies with x.

→ a significant role of inter-tetramer couplings

ZF-μSR

Nonmagnetic impurity effects

- symmetry function
- $P(t) = \sum_{j=1}^{2} A_j [\alpha_j \cos(2\pi f_j + \phi_j) \exp(-\lambda_{T_j} t)] +$ $(1-\alpha_i)\exp(-\lambda_{Li}t)$
- A_i : the volume fraction of the two muon sites $\lambda_{T,L}$: transverse and longitudinal relaxation rate
- ϕ_i : initial phase of the oscillatory signal
- f_i : muon Larmor frequency
- ♦ Two muon frequencies at f_1 =7.77 and $f_2 = 13.73$ MHz at T=1.6 K. f_1 : f_2 =1: 1.962 by μ SR
- cf. 0.45 μ_B on Cu(1): 0.83 μ_B on Cu(2)=1: 1.844
- by NS [M. Hase *et al*, PRB **80**, 104405 (09)]
- → Two muon sites near the respective Cu(1) and Cu(2) spins
- ♦ Order parameter

$$f = f_0 \cdot \left(1 - \frac{T}{T_N}\right)^{\beta}$$

- $-\beta = 0.42(3)$ and 0.39(1)
- cf) $\beta = 0.367$ for 3D Heisenberg antiferromagnets
- ♦ The anomalous evolution of the muon frequency below $T^* = 6.5$ K indicates a reorientation of spins.
- ♦ A energy hierarchy of frustrated spin topology - strongly interacting Cu(1) spins with singlets
- + nonfrustrated weakly interacting Cu(2) spins
- + weak AFM intertramer interaction of J_{Cd}
- → Reorientation of the magnetic structure

Conclusion

- (1) ¹¹B -NMR and µSR provide a spectroscopic signature for the long-range AFM ordering at T_N .
- (2) $1/T_2$ and μ SR parameters show magnetic anomaly at T = 6.5 K below $T_N = 9.8$ K.
- (3) The ordered moment of Cu(1) and Cu(2) spin evolves in a markedly different manner for temperature below T^* . This indicates site-dependent spin correlations.
- (4) The large difference in the degree of frustration and magnetic interactions between Cu(1) and Cu(2) spin, combined with weak intertramer interaction, is ascribed to the reorientation of spins at T^* .

