Magnetic Order and Spin Dynamics in CdCu₂(BO₃)₂ investigated by ¹¹B NMR and ZF-µSR K.-Y. Choi¹, W.-J. Lee¹, S.-H. Do¹, S. W. Yoon², Z. H. Jang³, B.J. Suh², J. H. Lee⁴, A. P. Reyes⁵, P. L. Kuhns⁵, and H. Luetkens⁶ ¹Department of Physics, Chung-Ang University, Seoul, Republic of Korea ²Department of Physics, The Catholic University of Korea, Bucheon, Republic of Korea ³Department of Physics, Kookmin University, Seoul, Republic of Korea ⁴Experimental Systems Division, RISP, IBS, Daejeon, Republic of Korea ⁵NHMFL, Florida State University, Tallahassee, FL 32310, USA ⁶Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, Switzerland ## **Shastry-Sutherland Lattice** #### **Shastry-Sutherland Lattice (SSL)** - \rightarrow intradimer coupling interaction J + interdimer coupling constant J' - \rightarrow When J'/J < 0.7, a ground state is an exact product of singlets. #### $SrCu_2(BO_3)_2$ - ### Experimental Realization of SSL with J'/J=0.63 - → Proximity to a quantum critical point - → Chemical or hydrostatic pressure might induce a transition to a long-range ordered state. - → One possible way to tune magnetic couplings is the substitution of Sr by Cd. ### ¹¹B NMR results - ◆ Two different Boron sites (11B : I = 3/2, $\gamma/2\pi = 13.655$ MHz) - lacktriangle Magnetic shift $K(\%) \rightarrow$ Clogston-Jaccarino plot $K_S(T) = K_{Chem} + \frac{A_{hf}}{N_A \mu_B} \chi_{spin}(T)$ $A_{hf} = 0.047(5) \text{ T}/\mu_B \text{ and } K_{Chem} = -0.0037 \text{ T}/\mu_B$ - $1/T_1$ diverges at T_N and flattens out below $T^* = 6.5$ K. $1/T_2$ has a broad maximum around $T^* = 6.5$ K. --> Presence of magnetic anomaly in an ordered state - ◆ The averaged dynamic susceptibility $$\frac{1}{T_1 T} \propto (T - T_N)^{-\alpha}$$ with $T_N = 9.92(9)$ K, $\alpha = 0.57(8)$. # SrCu₂(BO₃)₂ vs CdCu₂(BO₃)₂ SrCu₂(BO₃)₂: tetragonal structure (I-42m) - Spin dimer with a gap of Δ =33 K CdCu₂(BO₃)₂: monoclinic structure (P2₁/c) - AFLRO $T_{\rm N}$ =9.8 K \rightarrow a dilution effect (iii) Θ hardly varies with x. → a significant role of inter-tetramer couplings ## ZF-μSR # Nonmagnetic impurity effects - symmetry function - $P(t) = \sum_{j=1}^{2} A_j [\alpha_j \cos(2\pi f_j + \phi_j) \exp(-\lambda_{T_j} t)] +$ $(1-\alpha_i)\exp(-\lambda_{Li}t)$ - A_i : the volume fraction of the two muon sites $\lambda_{T,L}$: transverse and longitudinal relaxation rate - ϕ_i : initial phase of the oscillatory signal - f_i : muon Larmor frequency - ♦ Two muon frequencies at f_1 =7.77 and $f_2 = 13.73$ MHz at T=1.6 K. f_1 : f_2 =1: 1.962 by μ SR - cf. 0.45 μ_B on Cu(1): 0.83 μ_B on Cu(2)=1: 1.844 - by NS [M. Hase *et al*, PRB **80**, 104405 (09)] - → Two muon sites near the respective Cu(1) and Cu(2) spins - ♦ Order parameter $$f = f_0 \cdot \left(1 - \frac{T}{T_N}\right)^{\beta}$$ - $-\beta = 0.42(3)$ and 0.39(1) - cf) $\beta = 0.367$ for 3D Heisenberg antiferromagnets - ♦ The anomalous evolution of the muon frequency below $T^* = 6.5$ K indicates a reorientation of spins. - ♦ A energy hierarchy of frustrated spin topology - strongly interacting Cu(1) spins with singlets - + nonfrustrated weakly interacting Cu(2) spins - + weak AFM intertramer interaction of J_{Cd} - → Reorientation of the magnetic structure ## Conclusion - (1) ¹¹B -NMR and µSR provide a spectroscopic signature for the long-range AFM ordering at T_N . - (2) $1/T_2$ and μ SR parameters show magnetic anomaly at T = 6.5 K below $T_N = 9.8$ K. - (3) The ordered moment of Cu(1) and Cu(2) spin evolves in a markedly different manner for temperature below T^* . This indicates site-dependent spin correlations. - (4) The large difference in the degree of frustration and magnetic interactions between Cu(1) and Cu(2) spin, combined with weak intertramer interaction, is ascribed to the reorientation of spins at T^* .