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Abstract. Zero (ZF) and longitudinal field (LF) muon spin relaxation data of the d-metal
alloy Ni1−xVx are presented at several vanadium concentrations x below and above the critical
xc ≈ 11 % where long-range ferromagnetic (FM) order is suppressed. The clear single precession
frequency observed for Ni, as expected for a homogeneous FM, changes to rather damped
osciallation with small V substitution at x = 4 %, confirming magnetic inhomogeneities caused
by the less magnetic V environments in the magnetic Ni matrix. Furthermore, local fields
and spatial field distributions can be estimated to characterize different inhomogeneous regimes
developing with x in the FM phase of Ni1−xVx. In the regime of x = 7 − 10 % a Kubo
Toyabe function well describes the low temperature ZF and LF asymmetry data supporting a
static Gaussian field distribution. Closer to the quantum critical concentration a single scale
static Kubo Toyabe function with one field distribution is not sufficient to describe the muon
relaxation. These data indicate that further changes in spatial distributions and dynamics are
evolving as expected within the critical regime of a disordered quantum critical point.

1. Introduction
The study of quantum phase transitions (QPT) is a promising route to understand the origin
of unconventional properties and in finding new phases in correlated many body systems.
Introduction of “disorder”, through e.g. impurities or sample imperfection can significantly
change the nature of the QPT. In itinerant system with Heisenberg symmetry a new quantum
critical point is predicted with exotic properties such as observable quantum Griffiths effects [1].
Examples for disordered systems are not rare, but the degree and significance of the “disorder”
is often not clear. The binary alloy Ni1−xVx shows the obvious signs of such a disordered QPT
from bulk investigations [2, 3] and is therefore an ideal example for further microscopic studies.
muSR is ideally suited as spectroscopic and local probe [4] to reveal the first insights into these
disordered magnetic phases as it has been successfully employed for spin glasses [5], reduced
moment correlated electron systems like heavy fermions [6, 7, 8] and phase separated systems
close to first order transitions like transition metal compounds [9].
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The ferromagnetic (FM) order of Ni is rapidly suppressed replacing Ni by V. The critical
temperature Tc decreases approximately linearly and vanishes towards a V-concentration of
xc ≈ 11.4% [2] as shown in Fig. 1(a). Magnetization measurements show the typical weak
itinerant FM response in the FM phase for x ≤ 11%, the “non FM ordered”, paramagnetic
(PM) phase beyond xc is not compatible with independent magnetic moments. Instead, the
magnetization displays power laws in temperature (T) and magnetic field with non universal
exponents which vary with x in a wide regime x ≥ xc [2, 3]. This marks the quantum Griffiths
phase (GP) (see e.g. in [10]), characterized by a distribution of magnetic clusters with different
fluctuation rates. This phase is distinctly different than in clean QPT, where universal critical
exponents are ideally observed only at xc. We suspect that Ni1−xVx is a disordered magnet
but direct evidence is lacking. Friedel [11] already proposed that the drastic average magnetic
moment reduction (see e.g. ms in Fig 2(a)) in Ni introducing V is not homogeneous, as V (with 5
d-electron less than Ni) might reduce severely the spin of all the Ni-neighbors creating large voids
in the magnetization density. Early neutron measurements detected a large magnetic moment
disturbance in Ni-V alloys [12]. Our bulk magnetization measurements only show (a mean field
behavior of) the order parameter of a FM and no clear signs of the disorder. Only close to xc

towards very low temperatures deviations from a long range FM become apparent, cluster glass
freezing is observed [2] which does not show on this linear T-scale and is not discussed here. Here
we use µSR to display the “disorder” in Ni1−xVx, probing the local fields in the FM phase. We
present how to characterize the inhomogeneities in the FM and how they evolve upon dilution
approaching a disordered QCP.

2. Experimentals
Polycrystalline samples of the alloy Ni1−xVx were prepared as spherical pellets in the
concentration range x = 0 to x = 12.3 % as before [2]. The fcc structure remains unchanged
with x, the lattice constant increases by 1% for x = 15% [2]. The muon data were collected
using the Dolly instrument at PSI, using several pellets of each composition wrapped in silver
foil, at low temperatures, in zero (ZF) and longitudinal magnetic fields (LF).

3. Evolution of disorder in the ferromagnetic state in Ni1−xVx

Fig. 2 shows an overview of the muon asymmetry for several Ni1−xVx samples with different
V concentration x at low temperatures T in zero field. In pure Ni a nearly undisturbed muon
precession is observed as expected for a clean FM with a single frequency of f = 20.2 MHz or
ω = 127 rad/µs corresponding to a local field of B0 = ω/γ =0.15 T as seen before [13] (using the
known gyromagnetic ratio of the muon as γ = 2π×135.5 MHz/T). Upon doping with V these
oscillations appear more “damped”, shift to larger time scales and finally disappear beyond the
critical concentration in the PM phase. Already for x ≥ 4 % only the first minimum remains
visible due to a distribution of fields revealing an inhomogeneous FM. Some subtle qualitative
changes can already be seen in Fig. 2: Note that x = 4 % still shows a second minor maximum
or “nose”, and that the minimum for x = 11% is rather shallow.

In order to model the total asymmetry A(t) for all temperatures we use different polarization
functions P (t) for the FM component, a simple exponential function for the PM component
(approximating effectively electronic spins of clusters and the diluted V nuclear moments) and
a small constant background ABG due to the Ag.

A(t) = AFMP (t) +APM exp(−λt) +ABG (1)

Posci(t;ω,Γ, λL) =
1
3

exp(−λLt) +
2
3

cos(ωt+ φ) exp(−Γt) (2)
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Figure 1. (a) Phase diagram for Ni1−xVx:
critical temperature Tc vs. V-concentration x,
separating ferromagnetic (FM), paramagnetic
(PM) and quantum Griffiths phases (GP).
Tc from magnetization (AP, χ) [2] and µSR.
Magnetic moment determined at high (msat)
and low fields (ms). Straight line indicates
xc = 11.4 %. (b) Angular frequency or local
field scales characterizing the center (ω) and
distribution width (∆) from various P (t) models
vs. x.
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Figure 2. Asymmetry of Ni1−xVx vs time
for different V-concentrations x, ranging
from x = 0 to x = 12.3 % at low
temperatures (1.5K < T < Tc/4). Each
is shifted by a constant C for clarity. The
line represents a fit to the oscillator model
with Posci.

First, we apply an oscillator model Posci (see lines in Fig. 2), a simplified “damped” expansion
of a single precession frequency as expected in a perfect clean FM polycrystal like Ni with one
preferred stopping site. This form is often used and also provides here a parametrization for all
x ≤ 11 %. For low T , APM and λ are essentially zero, later we need to set λL = λ for all T . Also
we keep φ = 0 for higher x to produce consistent parameters. The main frequency ω decreases
with x as shown in Fig. 1(b). The damping constant Γ or transverse field depolarization rate
is increased for x = 4 % then decreases further with x. Γ can be seen as a measure of field
distribution, as ω is indicating some local field, but comparison to other models like PgenKT

(see eq.(4) below) show that in the “damped” cases ω is not exactly the mean field nor the field
distribution. Γ has half the value of ω at lowest T for all samples with 7% < x < 10 %, which
marks the regime with a Gaussian field distribution as discussed below.

More revealing simple models can be applied, but are restricted to certain x-regimes. In
effect, for x = 7 − 10 % a static Kubo-Toyabe (KT) function PKT describes the data well for
low T, indicating a Gaussian distribution of local fields [14] in the FM state.

PKT (t; ∆, ν = 0) =
1
3

+
2
3

(1− (∆t)2) exp(−1
2

(∆t)2) (3)

The single parameter, the width ∆ of the distribution decreases with x towards xc as shown
in Fig. 1(b). This field distribution follows the magnetic moment ms on the same straight
line in Fig.1(a,b). It is remarkable that inside a FM a “random” magnetic field distribution
is found as originally shown for randomly oriented frozen moments [14]. We suspect here that
the distribution of different local fields indicates a spatial variation of magnetic moments in



a long range ordered FM state. These muon data provide evidence that this system is indeed
inhomogeneous or “disordered” as required to show this disordered QCP with distinct properties.

A Kubo Toyabe fit PKT is possible for x = 4 % but can be improved by a generalized form
PgenKT [15] allowing a finite center field H0 = ω/γ 6= 0 from large domains or crystallites which
is the center of a Gaussian distribution with width ∆H = ∆/γ.

PgenKT (t; ∆, ω, ν = 0) =
1
3

+
2
3

exp(−1
2

(∆t)2)[cos(ωt)− 1
ω

(∆t)2 sin(ωt)] (4)

The two parameters ω and ∆ are shown in Fig. 1(b). ∆ is similar for both x = 4 % and
x = 7 %, overall the maximum field distribution appears at about 1

2xc. The characteristic field
H0 in x = 4 % is still high due to intact magnetic domains, while H0 is rather close to zero in
x = 7 %, the field distribution ∆H dominates. The transition from dominating FM domains
to random distribution occurs in between these concentrations at about 1

2xc. That matches the
concentration x = 5.6 % where the number of reduced moment Ni-atoms (due to one or more
V neighbors) exceeds the number of undisturbed “magnetic” Ni-atoms (with only Ni neighbors)
in a fcc lattice. The local muon probe distinguishes the different degrees of inhomogeneities in
this FM introduced by V substitution. The model PgenKT provides even a direct quantitative
assessment of a internal field distribution width ∆/γ and a center local field ω/γ. An effective
field

√
∆2 + ω2/γ finally scales with the mean magnetic moment ms(x).

The KT function PKT does not work as well towards the more diluted regime approaching
xc, the minimum becomes very shallow, for e.g. 11 %, questioning the long range order of
this compound. Beyond xc, for x = 12.3 %, a small depolarization rate (λ = 0.07µs−1 for 2K)
describes the data in ZF. Extended time, more temperature and magnetic field data and analysis
are required to reveal more details about the fluctuation rates beyond the FM regime.

4. Contrasting the field distributions in Ni1−xVx with x = 9 % and x = 11 %
The asymmetry spectra for x = 9 % can be modeled well by a KT function. For higher
temperature we used a dynamic KT approximation with finite fluctuation rates ν [14, 16] for
the FM contribution (as presented in Fig. 3(a)). Application of a longitudinal field (LF) at
low T confirms the main parameter choices of a KT description (see Fig.3(b)). The straight
lines shown are a KT fit with unchanged parameters from ZF with internal field = external LF,
better fit results are achieved with reduced internal fields in these FM spherical samples. Fig.4
(a-d) presents the T-dependence of the fit-results of the exploratory oscillator model and the
KT model. Panel (a) shows the main field distribution ∆ together with ω and Γ. ∆(T ) follows
nearly a mean field T-dependence like the magnetic moment ms(T ) vanishing at Tc. The fixed
ratio ω/Γ of 2 (observed for several x at low T) changes towards higher T towards 1, before ω
vanishes. The ferromagnetic amplitude ratio, the ferromagnetic contribution divided through
the total contribution, AFM/(AFM + APM ), increases rapidly below Tc and then saturates to
about 1 independent of the model (see Fig.4(b)). The depolarization rate λ is quite small in the
PM regime and also very small, close to the detection limit, in the FM for T < 0.8Tc (as λL) in
Posci. This rate peaks towards Tc, indicating some critical dynamics. The dynamic KT model
reveals directly critical fluctuations increasing rapidly at Tc (see Fig.4(d)). We see that below
about 0.8Tc magnetic fluctuations become irrelevant. All quantities as AAF , ∆, ν indicate a
critical temperature of Tc = 108 K consistent with low field susceptibility χ measurements [3],
a bit lower than the usual high field Arrott plot (AP) determination of Tc = 130 K.

Magnetization measurements indicate that x = 11 % is still a ferromagnet displaying Arrott
plots and no indication of a cluster glass transition is found in magnetic susceptibility. A strong
ZF depolarization is observed, but the minimum is too shallow for the static KT form even
at lowest T (see Fig. 3(d)). The ZF data can be modeled quite well applying a dynamic KT
function (P (t,∆, ν > ∆)), using the strongly fluctuating approximation of a Keren function



5

10

15

20

25

30

0 0.5 1 1.5 2 2.5

1.7K
3K
4K

5K
6K

A
sy

m
m

et
ry

 (%
)

x=11%

time (µs)

(c)

LF=0G
100G
500G

1kG
dynKT 
KT

0 0.5 1 1.5 2 2.5
time (µs)

x=11% T=1.7K (d)7K
9K

0 0.1 0.2 0.3 0.4 0.5

LF=0G
100G
500G
1kG

2kG
KT
KT 320G
KT 854G

x=9% T=10K (b)5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5

10K
80K
90K
95K

100K
105K
110K

A
sy

m
m

et
ry

 (%
)

x=9%

(a)

Figure 3. (a) ZF spectra for Ni1−xVx with x =
9 %. Lines from PKT . (b) LF spectra for x = 9 %
at T = 10 K. Lines from PKT : field = external
LF (solid), adjusted internal field (dashed). (c) ZF
spectra for x = 11 %. Lines from PGBG. (d) LF
spectra for x = 11 %. Dotted line: static PKT .
Dashed lines: dynamic PKT . Solid lines: PGBG.
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Figure 4. T-dependence of various fit
parameters using Posci, dynamic PKT or
PGBG to model A(t) as shown in Fig. 3
for x = 9 % (a-d) and for x = 11 % (e-h).
Lines are guide to the eye.

[17, 16]. But the present LF data (e.g. in 500G) cannot be reproduced keeping the same
fluctuation rate as in ZF (see dashed line in Fig. 3(d)). More intermediate fields are needed
to study field dependent changes. We alternatively applied a static distribution function which
describes multiple field distributions, narrow and wide ones to increase the weight towards very
small field regions. Taking the response of many Gaussian distribution of fields with different
∆′s following a Gaussian distribution with width ∆W and center ∆0 gives the so called simple
Gaussian broadened Gaussian function PGBG [18, 19].

PGBG(t; ∆eff , R, ν) =
1
3

exp(−2
3
νt) +

2
3

((1 +R2)/N)3/2(1− (∆t)2/N) exp(− 1
2N

(∆t)2) (5)

with N = 1 +R2 +R2∆2t2, where R = ∆w/∆0 and ∆2 = ∆2
eff = ∆2

0 + ∆2
w. This form describes

the data well as shown in Fig. 3(a) (with R=0.7). Note that an additional PM contribution with
a small depolarization rate is always present even for low T. The effective field distribution width
∆eff is shown in Fig. 4(e) together with the Posci parameters. They decrease towards higher
T , a sharp critical temperature Tc cannot be determined. Also, the ratio of these parameters
at x = 11 % is different than those at x = 9 % at low T, more similar to those at x = 9 %
close to Tc. The FM amplitude ratio increases only gradually towards low T (Fig. 4(f)), not
as sharp as in x = 9 %. At the lowest T, only 75 % of the amplitude can be described by the
FM component P (t), while an extra (rest of 25 %) exponential “paramagnetic” contribution
remains, independent of the model. The depolarization rate λ (=λL) shows barely a maximum
at Tc and does not decrease towards low values as for x = 9 % in the oscillator model (Fig.4(g)).
Keeping PGBG static (ν = 0) the depolarization rate λ of the PM contribution increases further
below Tc (Fig.4(h)). A small LF=100G suppresses these fluctuations (see Fig.3(d)), while the
steep FM depolarization seems unaffected. Alternatively, allowing small fluctuations (ν > 0)
and keeping λ = 0.07µs−1 constant produces some critical dynamic towards Tc. Estimates of



Tc ≈ 6 K from these muon data is in agreement with low field susceptibility chi measurements
[3], much lower than Arrott plot (AP) extrapolations of Tc = 14 K. [2]

While the inhomogeneous magnetism in x = 9 % could be well characterized by one scale, the
KT distribution width ∆, multiple field distributions seemed better in x = 11 %. Furthermore,
a PM contribution due to fluctuating clusters never vanishes at low T. These models are far
too simple but indicate that fluctuating moments and the spatial inhomogeneities further evolve
towards xc. 11 % is not just a scaled down version of 9 % with a smaller field range.

5. Conclusion
Ni1−xVx offers the opportunity to study a FM with different degrees of “spatial disorder” or
inhomogeneities, introduced through V substitution from a pristine FM to a disordered QCP.
Analyzing the muon asymmetry with a generalized KT model, PgenKT , the mean local field
and the local field distribution could be determined for a large x regime. These parameters
measure the degree of “disorder” and allow a distinction between different regimes within the
FM state. For lower x intact domains with finite fields dominate, while for larger x the field
distribution dominates. This distribution width is the dominating energy scale in a wide region
7 % ≤ x ≤ 10 %, it follows the order parameter, ms. Approaching the critical concentration, xc,
simple single scale fit functions cease to work. Multiple distributions with multiple time scales
evolve at the edge of the Griffiths phase, dominated by clusters with different time scales. So
far we only used simple models to probe local field distributions in the FM phase. To relate
this information to the spatial variation of inhomogeneities and correlation length a microscopic
model is needed. The simple fcc lattice of Ni-V looks promising as a good model system. The
study of the complex scenario in the quantum critical regime and towards the quantum Griffiths
phase is a further challenge in this d-metal alloy.
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