

LIQHYSMES – a Novel Hybrid Energy Storage Option for Buffering Short- & Long-Term Imbalances between Electricity Supply & Load

Michael Sander

Institute for Technical Physics

- Introduction: Energy Storage Options
- Former SMES Activities at the Research Centre Karlsruhe
- Today's Motivation I: New Conductor Options
- Today's Motivation II: Renewables
- LIQHYSMES: Concept & First System Studies
- LIQHYSMES: Model Plant & Buffering Process
- Some Implications of Size & Cost Estimate
- Summary & Conclusions

LIQHYSMES – a Novel Hybrid Energy Storage Option for Buffering Short- & Long-Term Imbalances between Electricity Supply & Load

Introduction: Energy Storage Options

- Former SMES Activities at the Research Centre Karlsruhe
- Today's Motivation I: New Conductor Options
- Today's Motivation II: Renewables
- LIQHYSMES: Concept & First System Studies
- LIQHYSMES: Model Plant & Buffering Process
- Some Implications of Size & Cost Estimate
- Summary & Conclusions

Energy Storage: Power & Energy Ratings

Energy Storage: Efficiency & Lifetime

Energy Storage: Cost per Power & Energy

Institute for Technical Physics

LIQHYSMES – a Novel Hybrid Energy Storage Option for Buffering Short- & Long-Term Imbalances between Electricity Supply & Load

- Introduction: Energy Storage Options
- **Former SMES Activities at the Research Centre Karlsruhe**
- Today's Motivation I: New Conductor Options
- Today's Motivation II: Renewables
- LIQHYSMES: Concept & First System Studies
- LIQHYSMES: Model Plant & Buffering Process
- Some Implications of Size & Cost Estimate
- Summary & Conclusions

Das SMES Speicherprinzip

SMES Kompensator zur Flickerkompensation

Daten

- Anzahl der Spulen 10
- Betriebsstrom 300 A
- max. Strom 430 A
- Gesamtinduktivität 4,5 H
- max. Feld 4 T
- Spannungsabfall 700 V
- Gesp. Energie @ 300 A 203 kJ
- Gesp. Energie @ 430 A 416 kJ

SMES Kompensator zur Flickerkompensation

Weltweit erster Feldtest eines SMES Systems in 1997!

25 MW Pulsleistungsmodulator

Pulsdaten

- Länge 1,7 ms
- Leistung 17..25 MW
- Frequenz 5..10 Hz
- Flat top ± 0.5 %

Spulendaten

- Induktivität 70 mH
- Magnetfeld 4T/2600 A
- Max. Spg. 7 kV
- Max. dB/dt 100 T/s
- Gesp. Energie 237 kJ

25 MW Pulsleistungsmodulator

1: Pulse current 0 – 2500 A – 0, 2: SMES-voltage max 4 kV 3: current in SMES-switch S1

Aufsicht auf SMES und Teile der Leistungselektronik

Weltweit erstes System für 25 MW Pulsleistung erfolgreich am ITP in 2003 getestet Abschluss der Installation bei DESY in 2007

LIQHYSMES – a Novel Hybrid Energy Storage Option for Buffering Short- & Long-Term Imbalances between Electricity Supply & Load

- Introduction: Energy Storage Options
- Former SMES Activities at the Research Centre Karlsruhe
- Today's Motivation I: New Conductor Options
- Today's Motivation II: Renewables
- LIQHYSMES: Concept & First System Studies
- LIQHYSMES: Model Plant & Buffering Process
- Some Implications of Size & Cost Estimate
- Summary & Conclusions

SMES: LTS & New Conductor Options

- only small Low Temperature Superconducting (LTS) systems operated at LHe temperature (~4 K or -269 °C) have been commercially available up to now
- up to about 20 SMES systems of up to a few MW & a few MJ are or were in use worldwide for grid stabilization, UPS applications etc.; some devices may be in use for military purposes

The cost for LTS-based SMES systems and their cryogenic infrastructure has prevented a broader utilization.

Current Options for Higher Operating Temperatures:

- 123-HTS (YBCO) operated up to ~ 4T@50K , 7T@30K or 10T@20K
- Bi-2223 operated up to ~ 4T@27K, 7T@20K or 10T@10K
- MgB2 operated up to ~ 4T@20K or 7T@10K

SMES: New Conductor Option Bi-2223

8.1T@20K ; 20cm bore; cryogen-free

0.5T@77K ; 5cm bore; LN₂-cooled

multi-filamentary tapes 4mm x 0.2mm

Sumitomo Electric Industries

M. SANDER

SMES: New Conductor Option 123-HTS

Roebel cable (Goldacker et al., ITP)

coated conductors

SuperPower Inc.

9.8T@4.2K or 26.8T@4.2K in 19T ; 1cm bore

> 1.1T@77K or 2.4T@64K

SMES: New Conductor Option MgB₂

multi-filamentary tapes & wires Columbus Superconductors S.p.a.

2.1T@16K ; racetrack coil with iron yoke

0.5T@20K ; 60cm patient gap

3.9T@4K or 3.0T@15K or 2.4T@20K ; 3.8cm bore

HyperTech Inc.

The performances of conductors achieved already today, allow the design, manufacture and demonstration of SMES systems based on higher temperature superconductors.

AC losses especially for the 123-HTS require particular attention if not fundamental innovations. SMES systems should therefore first address those applications which do not require a fast ramping of the field.

Costs for the conductors (especially for Bi-2223 and 123-HTS) and (despite higher operating temperatures) also for the cryogenics remain key issues.

LIQHYSMES – a Novel Hybrid Energy Storage Option for Buffering Short- & Long-Term Imbalances between Electricity Supply & Load

- Introduction: Energy Storage Options
- Former SMES Activities at the Research Centre Karlsruhe
- Today's Motivation I: New Conductor Options
- Today's Motivation II: Renewables
- LIQHYSMES: Concept & First System Studies
- LIQHYSMES: Model Plant & Buffering Process
- Some Implications of Size & Cost Estimate
- Summary & Conclusions

Renewables (RES): EU & Germany by 2020

EU 2009 Renewable Energy Directive (2009/28) & EREC Technology Roadmap 20 % by 2020

- overall 20% RES target for 2020
- about 35% RES target for electricity production: 1,370 TWh
- wind: ~ 477 TWh & 180 GW and PV: ~ 180 TWh & 150 GWp
- transmission & distribution grid infrastructure, intelligent networks, storage facilities ...
- **10%** of **transport** fuelled by RES
- international agreements 30% ?

Germany: Energiekonzept 2010 Bundesregierung & Nationaler Aktionsplan für EE 2010 (BMU):

- 35% to 38.6% RES target for electricity production in 2020
- wind: ~ 104 TWh & 46 GW and PV: ~ 41 TWh & 52 GWp

Renewables: Variations

DOE / Sandia: 2-4 Nov 2010 Energy Storage Systems Program

Photovoltaics: Variations

"High penetration" - Installed PV amounts to 15-20% of feeder peak load – issues are already being experienced – even at 5%

DOE / Sandia: 2-4 Nov 2010 Energy Storage Systems Program

Wind: Variations I

Monthly Supply in GWh Period: 14 Months Time resolution: 1 Month

Daily Minima & Maxima in MW Period: 1 Month Time resolution: 15 Minutes

Renewable Wind Energy Supply (EEG) In Germany, January 2007 Power in MW Daily Minima & Maxima of the 15 Min. Supply Profiles

Wind Energy in Germany in GWh: Monthly Supply Jan 2006 to Feb 2007

Wind: Variations II

Wind Power in Germany, 2007 in GW: Daily Curves averaged over 15 min

Average & Extreme Wind Speed **Time resolution: 60 Seconds** (measurement well below)

Inertia of Wind Turbine: Reaction Time ~ 10s of Seconds

Load: Variations I

Daily Load in EnBW in GWh: 8 Weeks in Summer / Winter

Daily Load in GWh Period: 8 Weeks Time resolution: 1 Day

Lastprognose und tatsächliche Last

Imbalances: Second, Minute & Hour Control

RW Net

Zeitlicher Ablauf und Abgrenzung des Regelleistungs- und Reserveeinsatzes

© RWE Net AG - Netzvertrieb

LIQHYSMES – a Novel Hybrid Energy Storage Option for Buffering Short- & Long-Term Imbalances between Electricity Supply & Load

- Introduction: Energy Storage Options
- Former SMES Activities at the Research Centre Karlsruhe
- Today's Motivation I: New Conductor Options
- Today's Motivation II: Renewables
- LIQHYSMES: Concept & First System Studies
- LIQHYSMES: Model Plant & Buffering Process
- Some Implications of Size & Cost Estimate
- Summary & Conclusions

Energy Storage: LIQuid HYdrogen & SMES

- Power Conversion & Control Unit (PCC), Electrochemical Energy Conversion (EEC) & LIQHYSMES Storage Unit (LSU)
- LH2 fuel & bulk energy carrier: generally applicable & highest volumetric energy density
- SMES: fast & efficient short term electrical energy storage
- LSU: joint use of cryogenic infrastructure
- SMES & modular EEC: smooth flow control & EEC operation close to optimum
- hybrid energy storage to buffer supply / load imbalances from sec up to days

M. Sander, R. Gehring, H. Neumann, T. Jordan, Int. J. of Hydrogen Energy 37 (2012) 14300

LIQHYSMES: Second, Minute & Hour Control

H2 Storage Losses: Compressed GH2 vs. LH2

GH2 @ 150-200 bar: natural gas caverns for large central storage systems (appropriate geological formations NEEDED) LH2: ~ 6X volumetric energy density; distributed GWh-class energy storage @ arbitrary sites

LIQHYSMES Storage Unit LSU:

- Regenerative H2 Liquefier
- LH2 storage tank
- SMES

Regenerative Liquefaction =

"Cold Recovery"

Losses should become fully comparable with compressed GH2 @ 150-200 bar

Regenerative Liquefaction: Target Parameters

Inlet GH2 Temperature & Pressure at Warm End of Regenerator	300 K / 1.50 MPa
Outlet GH2 Temperature & Pressure at Cold End of Regenerator	27 K / 1.35 MPa
Outlet GH2 & LH2 Temperature & Pressure at Cold End of J-T-Valve	21 K / 0.12 MPa
Percentage of LH2 after J-T-Valve	~ 80 %
Inlet LH2 Temperature & Pressure at Cold End of Regenerator	21 K / 0.12 MPa
Outlet GH2 Temperature & Pressure at Warm End of Regenerator	294 K / 0.10 MPa
Percentage of p-H2 in LH2	> 98.5 %
Electric Energy for Compression of GH2 at Ambient Temperature (isothermal compressor efficiency ~ 60 %)	~ 10.9 kJ/mol
Electric Energy for Liquefaction of GH2 after J-T-Valve at 21 K (cryocooler: 15 % Carnot efficiency)	~ 15.5 kJ/mol
Total Electric Energy required for the Storage Process	~ 26.4 kJ/mol
H2 Liquefaction Loss per Stored Chemical Energy (total enthalpy change for the water splitting / formation process ~ 286 kJ/mol)	~ 9 %
H2 Liquefaction Loss per Stored Chemical Energy in Large Conventional H2 Liquefaction Plants	~ 30 - 38 %

Solenoidal & Toroidal 10 GJ SMES Systems I

SMES Configurations storing the same Energy at the same Maximum Magnetic Field

discharged @ 50 % of maximum operating current

M. Sander, H. Neumann, Supercond. Sci. Technol. 24 (2011) 105008

Solenoidal & Toroidal 10 GJ SMES Systems II

	S1	S4	T4	T20
Total Number of Solenoidal Coils				
	1	4	4	20
Outer	Radius / Inner Radius / Height of	Individual Coil	-	
8T	5.66 / 5.01 / 5.66 m	3.14 / 2.78 / 6.29 m	4.02 / 3.56 / 4.02 m	4.13 / 3.65 / 0.83 m
4T	8.98 / 7.95 / 8.98 m	4.99 / 4.41 / 9.98 m	6.38 / 5.64 / 6.38 m	6.55 / 5.80 / 1.31 m
2T	14.3 / 12.6 / 14.3 m	7.92 / 7.01 / 15.8 m	10.1 / 8.96 / 10.1 m	10.4 / 9.21 / 2.08 m
Total I	Radius / Height of SMES System			
8T	5.66 / 5.66 m	7.86 / 6.29 m	10.25 / 8.04 m	11.36 / 8.26 m
4T	8.98 / 8.98 m	12.47 / 9.98 m	16.3 / 12.8 m	18.0 / 13.1 m
2T	14.3 / 14.3 m	19.8 / 15.8 m	25.8 / 20.3 m	28.6 / 20.8 m
Radia	/ Vertical Distance for Heart Pace	emaker Limit (0.5 mT)	-	
8T	103 / 122 m	34 / 30 m	37 / 23 m	16 / 7.2 m
4T	129 / 155 m	47 / 40 m	53 / 32 m 25 / 1	
2T	163 / 194 m	65 / 55 m	74 / 45 m	38 / 17 m
Mean	Mean Operating Current Density in Winding			
8T	1,404 A/cm2	1,860 A/cm2	1,547 A/cm2	1,716 A/cm2
4T	442 A/cm2	586 A/cm2	487 A/cm2	541 A/cm2
2T	139 A/cm2	185 A/cm2	153 A/cm2	170 A/cm2
Total Conductor Length x Operating Current (=lc/2)				
8T	1.73 GAm	3.15 GAm	2.73 GAm	3.29 GAm
4T	2.18 GAm	3.96 GAm	3.44 GAm	4.15 GAm
2T	2.75 GAm	4.99 GAm	4.34 GAm	5.22 GAm

Ramping Losses: Frequency Dependence

for high magnetic fields + very low frequencies: hysteretic AC losses well approximated by critical state model

Journal of Physics: Conference Series 234 (2010) 022030: FEM-Calculations on the Frequency Dependence of Hysteretic Losses in Coated Conductors, M Sander and F Grilli, EUCAS 2009

Ramping Losses of SMES: Assumptions

for high magnetic fields & very slow ramping processes:

- eddy current & coupling losses neglected
- hysteretic magnetization losses HML approximated by critical state model, transport losses neglected
- individual filaments (e.g. CC tapes in a Roebel cable) essentially decoupled => losses don't explicitly depend on cable *Ic* or its geometry
- orientation dependence of *Ic(B)* for CC & Bi-HTS
- misorientation angle of 2 degrees relative to solenoid axis for CC

Differential Ramping Loss DRL:

$$HML = I_c WB_{\max} \frac{2B_c}{B_{\max}} [\ln \cosh\left(\frac{B_{\max}}{B_c}\right) - \tanh\left(\frac{B_{\max}}{B_c}\right)]; B_c = \mu_0 J_c / \pi$$
$$HML = I_c RB_{\max} \frac{16}{3\pi} - \dots$$
$$DRL = [HML(I_c(B), B + \Delta B) - HML(I_c(B), B)] / (4\Delta B)$$

M. Sander, R. Gehring, ASC, Washington DC, August 2010, IEEE Trans. on Appl. Supercond. 21 (2011) 1362

Magnetic Field Distribution T20

BR, BZ & Btot @ P1 & P2:

Spatial Distribution Ramping Losses T20

Solenoidal & Toroidal 10 GJ SMES Systems III

	S1	S4	T4	T20	
Total	Total Conductor Length x Operating Current (=lc/2)				
8T	1.73 GAm	3.15 GAm	2.73 GAm	3.29 GAm	
4T	2.18 GAm	3.96 GAm	3.44 GAm	4.15 GAm	
2T	2.75 GAm	4.99 GAm	4.34 GAm	5.22 GAm	
CC lc(B)/Ic(4T) : Relative Required Con	ductor Quantity (Basis S1,4T)	-		
8T	1.12	2.03	1.80	1.65	
4T	1.00	1.81	1.61	1.47	
2T	0.88	1.59	1.41	1.28	
CC (width: 2 mm; sheet critical current density: 471A/cm@4T): Full-Cycle Ramping Loss / Resulting Cycle Efficiency (loss of power conversion: 3 %; cryocooler: 15 % Carnot efficiency)					
8T	7.19 MJ / 87.9 %	11.0 MJ / 84.8 %	10.1 MJ / 85.5 %	8.54 MJ / 86.8 %	
4T	4.39 MJ / 90.3 %	6.53 MJ / 88.5 %	6.09 MJ / 88.8 % 5.08 MJ /		
2T	2.55 MJ / 91.9 %	3.54 MJ / 91.0 %	3.42 MJ / 91.1 % 2.78 MJ / 9		
MgB2 Ic(B)/Ic(4T): Relative Required Conductor Quantity (Basis S1,4T)					
4T	1.00	1.82	1.58	1.90	
2T	0.23	0.42	0.36	0.44	
MgB2 (round wire, diameter 100 μm): Full-Cycle Ramping Loss / Resulting Cycle Efficiency (loss of power conversion: 3 %; cryocooler: 15 % Carnot efficiency)					
4T	0.92 MJ / 93.3 %	1.67 MJ / 93.3 %	1.58 MJ / 92.7 %	2.09 MJ / 92.3 %	
2T	0.29 MJ / 93.8 %	0.51 MJ / 93.6 %	0.44 MJ / 93.6 %	0.53 MJ / 93.6 %	

Solenoidal & Toroidal 10 GJ SMES Systems IV

Lower magnetic fields seem to reduce both the overall quantity of required superconductor and the losses during the ramping processes.

MgB2-SMES seem to have lower ramping losses than CC-SMES.

Up-Scaling & Modularity : Geometrical Ratios fixed i.e. for solenoid Ri/R, R/H ~ const.		
Operating Current Density Jop (for small R Jop is limited by the maximum Jop_max)	~ Bmax x 1/R	
Inductance (single winding; ~ area R ² / length H)	~ R	
Total Operating Current over whole Coil Cross Section lop ~ Jop x (R-Ri) x H	~ Bmax x R	
Cable Length (single winding) ~ $(Ri+R)/2$	~ R	
Conductor Quantity ~ lop x Cable Length	~ Bmax x R ²	
Full Cycle Ramping Loss ~ lop x Cable Length	~ R ²	
Stored Energy ~ Volume x Bmax ²	~ R ³ x Bmax ²	
Required Conductor Quantity per stored Energy E	~ 1/R	
Ramping Loss per stored Energy E	~ 1/R	

Increasing R reduces conductor quantity & losses per stored energy !

H2 + Short-Term Storage Devices: Cost I

LSU: "joint use of cryogenic infrastructure" - SMES already cost-competitive ?

or

Combination of H2 storage with alternative short-term storage devices ?

Simple cost estimates for investment and operational losses (valued at 0.10 €kWh-1) over a period of 30 years of operation for different rated power levels Pmax, different mean utilizations Pmean and rated supply periods between 50 and 500 s; 5 €kAm-1 @ 4 T, 20 K assumed as the common cost basis for the finished SMES magnet systems

	Super- Capacitor	Pb- Battery	Li- Battery	Fly- wheel	SMES
Investment Cost / Energy in k€/kWh	5 - 20	0.15 - 0.6	0.5 - 1.5	0.8 - 5	scaled
Investment Cost / Power in k€/kW	-	-	-	0.15 -0.5	-
Number of Deep Discharge Cycles in 10 ³	250 - 500	2 - 4	4 - 8	500 -1,000	3,000 - 5,000
Lifetime without Load in Years	5 - 10	4 - 8	4 - 8	20 - 30	20 - 30
Standby Loss per Rated Power in %	1.0-2.5	1.0-2.5	1.0-2.5	1.0 - 2.0	1.0 - 2.0
Cycle Loss per Rated Energy in %	8 - 15	20 - 30	8 - 15	10 - 15	scaled

Parameters used for Cost Estimates

H2 + Short-Term Storage Devices: Cost II

Higher rated power levels and higher mean utilizations tend to make the SMES more costeffective

LIQHYSMES – a Novel Hybrid Energy Storage Option for Buffering Short- & Long-Term Imbalances between Electricity Supply & Load

- Introduction: Energy Storage Options
- Former SMES Activities at the Research Centre Karlsruhe
- Today's Motivation I: New Conductor Options
- Today's Motivation II: Renewables
- LIQHYSMES: Concept & First System Studies
- LIQHYSMES: Model Plant & Buffering Process
- Some Implications of Size & Cost Estimate
- Summary & Conclusions

LIQHYSMES Model Plant: EEC & PCC

Electrochemical Energy Conversion - EEC:	
Rated Power for Electrolyser	25 x 40 MW
Rated Power for Gas Turbines & Generator	4 x 55 MW
Efficiency of Electrolyser / Gas Turbines & Generator	~ 85 / 55 %
Power Conversion & Control Unit - PCC:	
Operational Loss per Momentary EEC or SMES Power	3 %
Standby Loss per Rated EEC or SMES Power	1 %

M. Sander, R. Gehring, H. Neumann, ASC, Portland, OR, October 2012, to appear in IEEE Trans. on Appl. Supercond.

LIQHYSMES Model Plant: LSU

Outer Radius / Inner Radius / Width of Individual Solenoidal Coil of MgB2- SMES (Total: 20 Coils in a Toroidal Configuration)	11.1 / 9.79 / 2.21 m
Total Radius / Height of SMES System & LH2 Cryostat	30.4 m / 22.1 m
Radial / Vertical Distance for Heart Pacemaker Limit (0.5 mT)	~ 42 / 19 m
Rated Power x Supply Period of SMES = Rated Energy of SMES (discharged @ 50 % Coil Current) / Total Stored Energy	200 MW x 240s = 48 GJ / 64 GJ
Mean Operating Current Density in Winding	~ 320 A/cm2
Total Conductor Length x Operating Current (=lc/2)	~ 11.8 GAm
Max Operating Current / Magnetic Field of SMES / Voltage over a single Coil	10 kA / 4 T / 5 kV
Cable Length per Coil / Number of normalconducting Joints per Coil / Number of Windings per Coil	~ 30 x 2 km / 29 / ~ 30 x 30
Self Inductance of a single Coil / Mutual Inductance of the other 19 Coils	~ 28 H / ~ 35 H
Full-Cycle Ramping Loss of SMES (round MgB2 wire, diameter 100 $\mu m)$ / Electric Loss in % of Rated Energy (cryocooler: 15 % Carnot efficiency)	5.94 MJ / 1.16 %
Chemical Energy of LH2 (max. 70% of cryostat filled with LH2) / Deliverable Electrical Energy of LH2 / max. EEC Electric Output Power x Supply Period	~ 125 GWh /~ 69 GWhe / 220 MWe x 13 d
H2 Liquefaction Loss per Stored Chemical Energy (regenerative process)	10 %
Standby Losses of Cryostat / Current Leads (cryocooler)	595 / 75 kW

Buffering Process: Simulations I

Buffering Process: Simulations II 5 **Electrical Input Energy Total Loss** 4 loss EEC oss PCC **Energy Change in LH2** Loss LSU 3 Energy [GWh] 2 Loss H2 **Electrical Output Energy** Loss SMES 12 16 20 24 8

Time [hour]

- LIQHYSMES seems to be capable of safely balancing supply/load imbalances from seconds up to days
- EEC losses widely dominate over PCC & LSU losses

Ε

summed up H2 losses (EEC, PCC & LSU) far exceed summed up SMES losses (PCC & LSU)

Buffering Process: Results & Loss Analysis

Buffering Capability, Energy Shifting & Balances			
Max. Positive / Negative. Imbalance over the 24-Hour Period	+1,316 MW / -238 MW		
Max. Buffered 1-min- / 1-sec-Fluctuation of the Imbalance	~ 147 MW/ 284 MW		
Max. 1-sec Peak Power / Mean Power (over 24 Hours) of SMES	~ 421 MW / ~ 36 MW		
Electrical Energy Uptake / Delivery	4.990 GWh / 1.614 GWh		
Chem. Energy Balance of LH2 / Mag. Energy Balance of SMES	+ 0.460 GWh / + 0.001 GWh		
Losses			
PCC Loss of H2	0.338 GWh		
EEC Loss (Electrolyser and Gas Turbines & Generator)	2.109 GWh		
LSU Loss of H2 (Cryostat, H2 Liquefaction & Compression)	0.384 GWh		
Total Loss of H2	2.831 GWh		
PCC Loss of SMES	0.075 GWh		
LSU Loss of SMES (n.c. Joints of ~1n Ω ~ 0.08 MWh, Current Leads ~ 1.8 MWh & Ramping Loss ~ 7.3 MWh)	0.009 GWh		
Total Loss of SMES	0.084 GWh		
Total Loss	2.914 GWh		

LIQHYSMES – a Novel Hybrid Energy Storage Option for Buffering Short- & Long-Term Imbalances between Electricity Supply & Load

- Introduction: Energy Storage Options
- Former SMES Activities at the Research Centre Karlsruhe
- Today's Motivation I: New Conductor Options
- Today's Motivation II: Renewables
- LIQHYSMES: Concept & First System Studies
- LIQHYSMES: Model Plant & Buffering Process
- Some Implications of Size & Cost Estimate
- Summary & Conclusions

Some Implications for SMES: Size, size, size ...

Cabling, Winding, Assembling, Connecting

- torus: 20 solenoidal coils each of 11.1 m outer radius & 2.21 m of height
- mean operating current density of only ~ 320 A/cm2 in winding
- ~ 30 x 2 km MgB2 cable length, 29 nc.
 joints & 30 x 30 windings per coil
- losses: nc. joints of ~1nΩ ~ 0.08 MWh, current leads ~ 1.8 MWh & ramping loss ~ 7.3 MWh
- peak ramping loss ~ 2.2 kW over sec; local heat load well below 100 μW/cm3 @ 20 K
- max. operating current of 10 kA & voltage of < 5 kV (~ 3 kV) over a single coil</p>
- self inductance (one coil) of ~ 28 H vs. mutual inductance (19 coils) of ~ 35 H
- current feeding: each coil individually connected to the modular PCC

Cost Estimate: LSU

Rated Power / Peak Power of SMES	200 MW / 421 MW
Rated Energy of SMES @ 4 T (Rated Power x 240 s)	48 GJ
Chemical Energy / Deliverable Electrical Energy of LH2	~ 125 GWh / ~ 69 GWhe
Total Cost of LSU SMES (assumed 5 €/kAm@4T,20K) + Cryogenic Infrastructure (cryostat, liquefaction part, cooling, current leads)	~ 200 M€
Cost of LSU per Rated Energy of SMES	~ 15,000 €/kWhe
Cost of LSU per Rated Power of SMES / Cost of LSU per Peak Power of SMES	~ 1,000 €/kWe / ~ 475 €/kWe
Cost of LSU per Chemical Energy of LH2 / Cost of LSU per Deliverable Electrical Energy of LH2	~ 1.6 €/kWh / ~ 2.9 €/kWhe

Cost Estimate: LIQHYSMES Model Plant

Cost Estimates for GH2-based Systems & LIQHYSMES Systems	Total Cost M€	Cost per Power €/kW	Cost per Energy €/kWh
Cost Estimate 2009/2011 TECHNOLOGY MAP of European SET- Plan 300 MW / 5 GWh GH2 system based on electrolysis, salt cavern based storage and open cycle gas turbine	240-495	800-1,650	48-99
Crude Cost Estimate for LIQHYSMES System (~ GH2 System + Model LSU) ~ 300 MW / 69 GWhe LH2 system based on electrolysis, LSU based storage and open cycle gas turbine	240-495 + 200 = ~ 440-695	1,470- 2,320	6.4-10.1
Preliminary Cost Estimate 2009/2011 TECHNOLOGY MAP of European SET- Plan 300 MW / 5 GWh GH2 system based on electrolysis, salt cavern based storage and fuel cells	600-1,980	2,000- 6,600	120-396
Crude Cost Estimate for LIQHYSMES System (~ GH2 System + Model LSU) ~ 300 MW / 69 GWhe LH2 system based on electrolysis, LSU based storage and fuel cells	600-1,980 + 200 = ~ 800- 2,180	2,670- 7,270	11.6-31.6

LIQHYSMES – a Novel Hybrid Energy Storage Option for Buffering Short- & Long-Term Imbalances between Electricity Supply & Load

- Introduction: Energy Storage Options
- Former SMES Activities at the Research Centre Karlsruhe
- Today's Motivation I: New Conductor Options
- Today's Motivation II: Renewables
- LIQHYSMES: Concept & First System Studies
- LIQHYSMES: Model Plant & Buffering Process
- Some Implications of Size & Cost Estimate
- Summary & Conclusions

Summary & Conclusions I

The proposed LIQHYSMES Hybrid Energy Storage Concept

- simultaneously offers highest volumetric and independently scalable (short- & long-term) power & energy ratings for stationary applications
- uses the SMES for covering periods of seconds up to minutes and H2 for time scales of minutes up to days or weeks
- reduces the storage losses of LH2 to a level comparable with compressed GH2, but simultaneously offers higher safety margins
- offers substantial gains with up-scaling both in terms of efficiency and cost reduction, and thus addresses especially the range of tens to hundreds of MW and GWh
- is widely modular, allows the flexible adaptation of plant parts to different application requirements and reduces costly on-site manufacture / assemblies
- targets power- and energy-specific investment costs for the LSU of 500-750 €/kW and 2-3 €/kWh , based on the SMES power and the LH2 energy

Summary & Conclusions II

The proposed LIQHYSMES Hybrid Energy Storage Concept

- is essentially greenhouse gas neutral
- doesn't require any rare / precious (raw) materials (like nano-porous storage materials)
- doesn't require any specific geological formations (like salt caverns) and has minimum space requirements which allow flexible positioning e.g. an installation in cities
- is open and applicable to ANY combination of (high-pressure) electrolysers, fuel cells or gas turbines, to ANY H2-based supply network (GH2, LH2 or H2-rich compounds like methane) and to ANY centralized or spatially separated "virtual" plant configuration

Summary & Conclusions III

The proposed LIQHYSMES Hybrid Energy Storage Concept

- contributes to the large scale integration of variable RES as well as to the power quality & frequency control
- optimizes the utilization of electricity transmission & distribution networks thereby avoiding / deferring otherwise needed upgrades / overcapacities

New system approaches are needed for the design & integration of

- the LSU i.e. the regenerative liquefier, LH2 storage tank and SMES
- the whole LIQHYSMES plant i.e. the PCC, EEC and LSU.

An appropriate PCC given - ANY grid-relevant short-term disturbance could be buffered by the SMES: Link to EUCARD-2 & Accelerator Systems ?

THANK YOU

