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setting the stage

¢ low energy:
in this talk from atomic scale to scale beyond the reach of LHC, depending on context

® low energy ~ indirect ~ via effective theory
consider the case where no new particles are produced in final state

@ all particles of Standard Model (and only these) have been found
¢ up to electro-weak (EW) energies they behave as predicted by the SM
@ further big step when LHC — 13 — 14 TeV

¢ long standing expectation: there is new physics at the TeV scale
® NP real: some BSM particles explicitely produced
® NP virtual: BSM effects through loops

¢ what if no deviations from SM are found at 14 TeV LHC

Adrian Signer, Jan 2013 — p. 2/20




PAUL SCHERRER INSTITUT

setting the stage

given phenomenal success of SM, why are we not happy with SM ??

® theoretical reasons

many parameters, no explanation for values of parameters ??
gauge coupling unification !?

not complete (gravity, dark energy not part of SM) !

hierarchy problem !!

® observational reasons

neutrino masses !! — can be acommodated in SM™
dark matter !! — could be acommodated in SMT+
matter-antimatter asymmetry !!

strong CP problem! — SM++

“small” discrepancies (¢ — 2 of muon, proton radius) ?7

maybe we should take the SM more seriously ?
could it be the SM is valid to very high energies ?
only hierarchy problem points towards Axp ~ Agpw
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outline

theoretical considerations SM as an effective theory
BSM as an effective theory
limit of validity of SM

“random” examples of BSM effects non-collider searches
collider searches
mixed collider/non-collider searches

conclusions
with clear directions
how to proceed ...
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SM

the Standard Model

input: gauge group SU(3) x SU(2) x U(1): GHV, WHrVY BHY
3 families of matter fields (in fundamental representation): /;, g7, er, ur, dr
one scalar doublet for good measure: &

output:  all renormalizable (Dim < 4), gauge invariant operators

1 1 1 - ~ _
£SM — _ZGMVG//LV — ZWMVWMV — ZBMVB//LV _|_ QGMVGMV _|_ 7/ (Eﬁg _|_ é@@ —|_ . .)

Y _
+ (D, )T (DHD) + Ay @T D — 5(c1>T<1>)2 — (Yele®+...+h.c.)

¢ (mass) dimensions: [m] = [0#] = [A*] = 1 and [¢] = 3/2 and we must have [£] = 4.
® all operators have Dim 4, except for & & which requires a dimensionfull coefficient
A%y, ~ M% = hierarchy problem

¢ from experiment the (dimensionless) parameter ¢ is found to be extremely small (or 0?)
— strong CP problem
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BSM

beyond the Standard Model

¢ standard option: new physics (particles) at a high scale Ay

¢ treat SMis an effective theory valid up to ~ Ayv

U3 V1 O = A2 ($aD%91) (alP2) oy

_____ pseudoscalar: I =T%=+"°

U1 =M (o) - ' V1

coloured vector: I'* = ~,T"

rET _ 0(5) (5) C(G) (6)

BSM — SM‘l‘ZAUVO +ZA2 O, +...
+ very general and systematic approach

— limited information, £E§M only applicable at energies < Ayv

— not all BSM scenarios can be covered, e.g. millicharged particles

@ alternative: find the explicit model out of the infinitely many possibilities
— requires divine inspiration
+  more information, Lisn applicable at energies ~ Ayvy
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constraints on Ayvy

¢ the SM is probably not completely wrong . . .
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¢ make Ayv > Agw to minimize BSM effects

¢ this implies My > Agw in contradiction to experiment (hierarchy problem)

assume Ayy ~ Agw assume Ayv > Apw

_ + My as expected — whyis Mg < Ayv
dilemma:

— BSM physics seems to conspire + BSM effects naturally small
many small problems one big problem
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SM

self-consistency of SM: the Higgs-Top miracle

® consider self coupling of Higgs A(¢) with ¢ = In A% /Q3

¢ coupling runs:

4 dA(t) 5 o 5 E:E
— A - o o o / N \ /
3 dt Y N e - -
A A2 vt g*
® triviality bound: A(A) = Qo) — 2A\(v)v? = M% < S ”
| 1—3/(472) M(Qo) t H ™ 31n(A2/02)
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SM

self-consistency of SM: the Higgs-Top miracle plots: [Degrassi et al. 1205.6497]
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¢ for Mg ~ 125 GeV and M; ~ 173 GeV the SM seems to be consistent up to very
high energies Ayy ~ 102 — 101 GeV

@ is this a coincidence ?? (small Mg is not only a triumph for SUSY, but also for SM)
M larger than expected, My smaller than expected, A(Auv) = A(Ayv) =0

Adrian Signer, Jan 2013 — p. 9/20




PAUL SCHERRER INSTITUT

SMT

neutrino masses

add right handed singletv = vg to SM:  Lgy\+ = Lsm + (Y,, lvp®+ Miv+ h.c.)

Dirac mass term (as for all other fermions) m ~ Y, v

Majorana mass term (only for right-handed neutrino) M ~ Ayy > Agw

_ 0 m vy, _ 2
mass matrix (vr,vR) eigenvalues my ~ - and ma ~ M
m M VR

> X o

view this as and integrate out heavy v field
VR A
14 14
- - : ET ET c®) . o

= Dim 5 (Weinberg) operator: L, = L5\ + V(ﬁ D) (L P)

M ~ Ayv ~ 101! GeV to generate masses consistent with experiment

Weinberg operator is the only possible Dim 5 operator
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SMT

BSM in SM+

@ absence of large BSM effects “explained” by requiring Ayv > Agw

¢ classify Dim 6 operators (~ 60) [Buchmdiller, Wyler; Grzadkowski et al.]

By _
L+ = Lem + A (L) (£ P)
uv
(6) (6) (6)
— fG/GLGS + goh’u G + ql'q el'e + ..

A2 A2 A2

@ can always link an explicit (large-scale) BSM model to ET, by calculating coefficients

(6) of operators in ET

@ within ET, the coefficients are independent — tests like 4 — ey and u — eee are
independent

¢ coefficients of SM operators are also free to deviate from SM values =— tested e.g. in
search for anomalous triple-gauge couplings
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SMT++

axion and strong CP problem

® Lsm D g—;H_GWéW CP-violating term in QCD (and EW)

¢ no effect in perturbation theory, but cannot be ignored
® bounds from experiment (neutron EDM) 6 < 10~ 19, why so small ??

¢ drastic measure: add new field, axion a (dynamical 6 parameter)

1 . X
Lorpe+ O 30ua0"a— == (9 + i) e
™ a
Qs a y 0,a
- 8_Ca'yf_F F/J,V"‘anw ("vbfyﬂ"vb) .]/:

¢ nontrivial potential s.t. (a) = (0 + %) =0,i.e. V(0) < V(a)

a

excitations about minimum correspond to particle axion

¢ axion is pseudo-Goldstone boson, with global Peccei-Quinn U (1) symmetry broken at
high scale f, == axion has very small mass m, ~ m2 /f, and slim interactions
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search for axion

axion and dark matter

® axion is a very good dark matter candidate for f, ~ 1010 GeV = m, ~ 1073 eV

@ also searches e.g. via shining light-through-wall experiments

(v — a — v via Cy~ a E - B interaction)
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[Ringwald 1210.5081]
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charged current LFV

indirect tests @ LHC vs neutron/pion decay tests

¢ neutrino oscillation = lepton flavour violation
¢ test LFV also in charged sector

¢ Dim 6 operators in effective theory
Qgde 7 v 7+ Va5
Lsm + —22(Le)(dq) + —L (Lot e)(qouvu) + . ..

A2 A2
® these operators feed into anomalous charged current interactions a; — ¢;
GF Vud

+es ey Prv-ud+ er ey Prv - uch” Prd + .. ]

¢ this is a “standard procedure”, also used for tests on anomalous TGC, top couplings,
Higgs couplings etc.
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charged current LFV

¢ “low energy” beta decay n — p e v, requires non-perturbative input (form factors, from
Lattice or measurements)

¢ *“high energy” LHC pp — e + MET, requires non-perturbative input (parton distribution
functions, from measurements)

® compare constraints [Cirigliano et al.]  true complementarity
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charged current LFV

indirect tests vs direct tests

@ “virtual”/indirect tests as above or ; — ey and u — e e e extremely powerfull
¢ also done as “real”/direct test at LHC
¢ e.g. ATLAS search for narrow resonances decaying to eu, et or ut

® compare observation with SM and signal simulation m,,» = 500 GeV in R-parity
violating v — ¢¢' [1212.1272]
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anomalous gauge couplings

tests of triple gauge couplings (TGC) at LEP/Tevatron/LHC

® consider subset of L&, Ve{y,2Z}

A
L~ (14 Ag) W WHVY 4+ (14 Ak )W, W, VE 4 A—ZWWW’;VW
® ET:insiston SU(2) x U(1) gauge invariance = constraints Ag, = 0 and Ay = Az

® measure WW ,WZ, W~ ... cross section and obtain limits on (or find) anomalous
couplings Ag.,, Aky, Ay (but form factors needed)

¢ recent example for oy + owz [CMS, 1210.7544]

P— T T T T ‘ T T T T | T T T T ‘ T T T T
é - CMS 95% CL Limit on % and Ak, -
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SME

Lorentz and CPT violation via effective theory

assume spontaneous Lorentz breaking in underlying fundamental theory at very high
scale A ~ Mp [Colladay, Kostelecky]

SM/QED Lagrangian modified: L& = i1y5! DH1p — pm®T)

,Y/ej,ﬂ? = T + C,u,V'YV + d/,u/y5')/y + €un 4+ ...

meﬁ=m+aV’yy+bV'y,/’y5—|—...

induced parameters c,,.,, d,,.., a¥ etc = (particle) Lorentz-violating and CPT-violating
extension of SM

theory still invariant under observer Lorentz transformations

can test Lorentz and CPT invariance without having to understand Planck-scale
physics !

tests/limits on all energy scales: from study of hydrogen spectrum to effects in top
quark (e.g. m¢ VS my)
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conclusions

conclusions

® maybe the SM is even better than we think, Axp > Agw is a possibility!

¢ if we can directly access BSM physics
¢ with an explicit model coefficients of ET-operators can be computed
@ consistency checks between various observables (high-energy vs low energy)

@ if we cannot directly access BSM physics
¢ ET approaches offer a method to study large classes of BSM effects

¢ ET applied at different levels, depending on what is integrated out and what is
kept dynamical

¢ not everything can be covered by ET approach
NP at low scales, but hidden by small couplings (e.g millicharged particles)

¢ recently a move towards using ET-framework in many different areas

— good news for combining cosmology, high-energy and high-precision frontier
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conclusions

directions how to proceed

—

dig deep
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