

PSI Users Meeting 2013, BV 44

'Effective' Tests of the Standard Model

Adrian Signer

Paul Scherrer Institut

14.-16. JANUARY 2013

Iow energy:

in this talk from atomic scale to scale beyond the reach of LHC, depending on context

• low energy \simeq indirect \simeq via effective theory

consider the case where no new particles are produced in final state

- all particles of Standard Model (and only these) have been found
- up to electro-weak (EW) energies they behave as predicted by the SM
- further big step when LHC $\rightarrow 13 14 \text{ TeV}$
- Iong standing expectation: there is new physics at the TeV scale
 - NP real: some BSM particles explicitly produced
 - NP virtual: BSM effects through loops
- what if no deviations from SM are found at 14 TeV LHC

given phenomenal success of SM, why are we not happy with SM ??

- theoretical reasons
 - many parameters, no explanation for values of parameters ??
 - gauge coupling unification !?
 - not complete (gravity, dark energy not part of SM) !
 - hierarchy problem !!
- observational reasons
 - neutrino masses $!! \rightarrow$ can be acommodated in SM⁺
 - dark matter $!! \rightarrow$ could be acommodated in SM⁺⁺
 - matter-antimatter asymmetry !!
 - strong CP problem ! \rightarrow SM⁺⁺
 - "small" discrepancies (g 2 of muon, proton radius) ??

maybe we should take the SM more seriously? could it be the SM is valid to very high energies? only hierarchy problem points towards $\Lambda_{\rm NP} \sim \Lambda_{\rm EW}$ theoretical considerations

"random" examples of BSM effects

- SM as an effective theory
- BSM as an effective theory
- limit of validity of SM
- non-collider searches
- collider searches
- mixed collider/non-collider searches

the Standard Model

input: gauge group $SU(3) \times SU(2) \times U(1)$: $G^{\mu\nu}, W^{\mu\nu}, B^{\mu\nu}$

3 families of matter fields (in fundamental representation): ℓ_L , q_L , e_R , u_R , d_R one scalar doublet for good measure: Φ

output: all renormalizable ($Dim \leq 4$), gauge invariant operators

$$\mathcal{L}_{\rm SM} = -\frac{1}{4} G^{\mu\nu} G_{\mu\nu} - \frac{1}{4} W^{\mu\nu} W_{\mu\nu} - \frac{1}{4} B^{\mu\nu} B_{\mu\nu} + \hat{\theta} G^{\mu\nu} \tilde{G}_{\mu\nu} + i \left(\bar{\ell} \not{\!\!\!D} \ell + \bar{e} \not{\!\!\!D} e + \ldots \right) + (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) + \Lambda_{\rm UV}^{2} \Phi^{\dagger} \Phi - \frac{\lambda}{2} (\Phi^{\dagger} \Phi)^{2} - \left(Y_{e} \,\bar{\ell} e \,\Phi + \ldots + \text{h.c.} \right)$$

• (mass) dimensions: $[m] = [\partial^{\mu}] = [A^{\mu}] = 1$ and $[\ell] = 3/2$ and we must have $[\mathcal{L}] = 4$.

- all operators have Dim 4, except for $\Phi^{\dagger}\Phi$ which requires a dimensionfull coefficient $\Lambda_{\rm UV}^2 \sim M_H^2 \implies$ hierarchy problem
- from experiment the (dimensionless) parameter θ is found to be extremely small (or 0?)
 ⇒ strong CP problem

beyond the Standard Model

- standard option: new physics (particles) at a high scale Λ_{UV}
- treat SM is an effective theory valid up to $\sim \Lambda_{\rm UV}$

$$\mathcal{O}^{i} = \frac{1}{\Lambda_{\text{UV}}^{2}} (\bar{\psi}_{3} \Gamma^{a} \psi_{1}) (\bar{\psi}_{4} \Gamma^{b} \psi_{2})$$

pseudoscalar: $\Gamma^{a} = \Gamma^{b} = \gamma^{5}$
coloured vector: $\Gamma^{i} = \gamma_{\mu} T^{i}$

$$\mathcal{L}_{\rm BSM}^{\rm ET} = \mathcal{L}_{\rm SM} + \sum \frac{c_i^{(5)}}{\Lambda_{\rm UV}} \mathcal{O}_i^{(5)} + \sum \frac{c_i^{(6)}}{\Lambda_{\rm UV}^2} \mathcal{O}_i^{(6)} + \dots$$

- + very general and systematic approach
- limited information, \mathcal{L}_{BSM}^{ET} only applicable at energies $\ll \Lambda_{UV}$
- not all BSM scenarios can be covered, e.g. millicharged particles
- alternative: find the explicit model out of the infinitely many possibilities
 - requires divine inspiration
 - + more information, \mathcal{L}_{BSM} applicable at energies $\sim \Lambda_{UV}$

the SM is probably not completely wrong ...

• make $\Lambda_{\rm UV} \gg \Lambda_{\rm EW}$ to minimize BSM effects

• this implies $M_H \gg \Lambda_{\rm EW}$ in contradiction to experiment (hierarchy problem)

dilemma:	assume $\Lambda_{\rm UV} \sim \Lambda_{\rm EW}$	assume $\Lambda_{\rm UV} \gg \Lambda_{\rm EW}$
	+ M_H as expected	— why is $M_H \ll \Lambda_{ m UV}$
	 BSM physics seems to conspire 	+ BSM effects naturally small
	many small problems	one big problem

self-consistency of SM: the Higgs-Top miracle

- consider self coupling of Higgs $\lambda(t)$ with $t = \ln \Lambda^2/Q_0^2$
- coupling runs:

18

self-consistency of SM: the Higgs-Top miracle plots: [Degrassi et al. 1205.6497]

• vacuum stability:
$$\lambda(\Lambda) = \lambda(Q_0) - \frac{3}{4\pi^2} y_t^4 t \stackrel{!}{>} 0 \implies M_H^2 > \frac{3v^4 y_t^4}{2\pi^2 v^2} \ln \frac{\Lambda^2}{v^2}$$

- for $M_H \sim 125 \text{ GeV}$ and $M_t \sim 173 \text{ GeV}$ the SM seems to be consistent up to very high energies $\Lambda_{\rm UV} \sim 10^9 10^{14} \text{ GeV}$
- is this a coincidence ?? (small M_H is not only a triumph for SUSY, but also for SM) M_t larger than expected, M_H smaller than expected, $\lambda(\Lambda_{\rm UV}) = \dot{\lambda}(\Lambda_{\rm UV}) = 0$

neutrino masses

- add right handed singlet $\nu \equiv \nu_R$ to SM: $\mathcal{L}_{SM^+} = \mathcal{L}_{SM} + \left(Y_{\nu} \,\bar{\ell} \,\nu_R \,\tilde{\Phi} + M \bar{\nu} \,\nu + h.c.\right)$
- Dirac mass term (as for all other fermions) $m \sim Y_{\nu} v$ Majorana mass term (only for right-handed neutrino) $M \sim \Lambda_{\rm UV} \gg \Lambda_{\rm EW}$

• mass matrix
$$(\nu_L, \nu_R) \begin{pmatrix} 0 & m \\ m & M \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R \end{pmatrix}$$
 eigenvalues $m_1 \sim \frac{m^2}{M}$ and $m_2 \sim M$

• \implies Dim 5 (Weinberg) operator: $\mathcal{L}_{SM^+}^{ET} = \mathcal{L}_{SM}^{ET} + \frac{c^{(5)}}{M} (\bar{\ell} \, \tilde{\Phi}) (\bar{\ell} \, \tilde{\Phi})$

- $M \sim \Lambda_{\rm UV} \sim 10^{11}~{\rm GeV}$ to generate masses consistent with experiment
- Weinberg operator is the only possible Dim 5 operator

BSM in SM⁺

- absence of large BSM effects "explained" by requiring $\Lambda_{\rm UV} \gg \Lambda_{\rm EW}$
- classify Dim 6 operators (~ 60) [Buchmüller, Wyler; Grzadkowski et al.]

$$\begin{aligned} \mathcal{L}_{\rm SM}^{\rm ET} &= \mathcal{L}_{\rm SM}^{\rm ET} + \frac{c^{(5)}}{\Lambda_{\rm UV}} (\bar{\ell}\,\tilde{\Phi}) (\bar{\ell}\,\tilde{\Phi}) \\ &+ \frac{c_{0F}^{(6)}}{\Lambda_{\rm UV}^2} f \,G_{\mu}^{\ \nu} G_{\nu}^{\ \rho} G_{\rho}^{\ \mu} + \frac{c_{2F}^{(6)}}{\Lambda_{\rm UV}^2} \,\bar{q} \sigma^{\mu\nu} u \,\Phi G_{\mu\nu} + \frac{c_{4F}^{(6)}}{\Lambda_{\rm UV}^2} \,\bar{q} \Gamma q \,\bar{e} \Gamma e + \dots \end{aligned}$$

- can always link an explicit (large-scale) BSM model to ET, by calculating coefficients $c_{nF}^{(6)}$ of operators in ET
- within ET, the coefficients are independent \implies tests like $\mu \rightarrow e\gamma$ and $\mu \rightarrow e e e$ are independent

axion and strong CP problem

- $\mathcal{L}_{SM} \supset \frac{\alpha_s}{8\pi} \bar{\theta} G^{\mu\nu} \tilde{G}_{\mu\nu}$ CP-violating term in QCD (and EW)
- no effect in perturbation theory, but cannot be ignored
- bounds from experiment (neutron EDM) $\bar{\theta} \leq 10^{-10}$, why so small ??
- drastic measure: add new field, axion a (dynamical θ parameter)

$$\mathcal{L}_{\rm SM^{++}} \supset \frac{1}{2} \partial_{\mu} a \, \partial^{\mu} a - \frac{\alpha_s}{8\pi} \left(\bar{\theta} + \frac{a}{f_a} \right) G^{\mu\nu} \tilde{G}_{\mu\nu} - \frac{\alpha_s}{8\pi} C_{a\gamma} \frac{a}{f_a} F^{\mu\nu} \tilde{F}_{\mu\nu} + \sum C_{a\psi} \left(\bar{\psi} \gamma^{\mu} \psi \right) \frac{\partial_{\mu} a}{f_a}$$

• nontrivial potential s.t. $\langle \bar{a} \rangle \equiv \langle \theta + \frac{a}{f_a} \rangle = 0$, i.e. V(0) < V(a)

excitations about minimum correspond to particle axion

• axion is pseudo-Goldstone boson, with global Peccei-Quinn U(1) symmetry broken at high scale $f_a \implies$ axion has very small mass $m_a \simeq m_\pi^2 / f_a$ and slim interactions

axion and dark matter

- axion is a very good dark matter candidate for $f_a \simeq 10^{10} \text{ GeV} \Longrightarrow m_a \simeq 10^{-3} \text{ eV}$
- also searches e.g. via shining light-through-wall experiments

 $(\gamma \rightarrow a \rightarrow \gamma \text{ via } C_{a\gamma} \ a \ \vec{E} \cdot \vec{B} \text{ interaction})$

indirect tests @ LHC vs neutron/pion decay tests

- neutrino oscillation \implies lepton flavour violation
- test LFV also in charged sector
- Dim 6 operators in effective theory

$$\mathcal{L}_{\rm SM} + \frac{\alpha_{qde}}{\Lambda^2} (\bar{\ell} e) (\bar{d}q) + \frac{\alpha_{lq}^t}{\Lambda^2} (\bar{\ell} \sigma^{\mu\nu} e) (\bar{q} \sigma_{\mu\nu} u) + \dots$$

• these operators feed into anomalous charged current interactions $lpha_i o \epsilon_j$

$$\mathcal{L}_{\rm cc} = -\frac{G_F V_{ud}}{\sqrt{2}} \Big[(1 + \epsilon_L) \,\bar{e} \gamma_\mu P_L \nu \cdot \bar{u} \gamma^\mu P_l d \Big]$$

$$+ \epsilon_S \bar{e} \gamma_\mu P_L \nu \cdot \bar{u} d + \epsilon_T \bar{e} \sigma_{\mu\nu} P_L \nu \cdot \bar{u} \sigma^{\mu\nu} P_L d + \dots$$

 this is a "standard procedure", also used for tests on anomalous TGC, top couplings, Higgs couplings etc.

charged current LFV

- "low energy" beta decay $n \rightarrow p \ e \nu$, requires non-perturbative input (form factors, from Lattice or measurements)
- "high energy" LHC $pp \rightarrow e + MET$, requires non-perturbative input (parton distribution functions, from measurements)
- compare constraints [Cirigliano et al.] true complementarity

PAUL SCHERRER INSTITUT

[Bhattacharya et al. 1110.6448]

indirect tests vs direct tests

- "virtual"/indirect tests as above or $\mu \to e\gamma$ and $\mu \to e\,e\,e\,e$ extremely powerfull
- also done as "real"/direct test at LHC
- e.g. ATLAS search for narrow resonances decaying to $e\mu$, $e\tau$ or $\mu\tau$
- compare observation with SM and signal simulation $m_{\ell\ell'} = 500 \text{ GeV}$ in R-parity violating $\tilde{\nu} \rightarrow \ell \ell'$ [1212.1272]

tests of triple gauge couplings (TGC) at LEP/Tevatron/LHC

• consider subset of $\mathcal{L}_{\mathrm{SM}}^{\mathrm{ET}}$, $V \in \{\gamma, Z\}$

 $\mathcal{L} \simeq (1 + \Delta g_v) W_{\mu\nu} W^{\mu} V^{\nu} + (1 + \Delta \kappa_v) W_{\mu} W_{\nu} V^{\mu\nu} + \frac{\lambda_V}{\Lambda^2} W_{\mu\nu} W^{\nu}_{\ \rho} V^{\rho\nu}$

- ET: insist on $SU(2) \times U(1)$ gauge invariance \implies constraints $\Delta g_{\gamma} = 0$ and $\lambda_{\gamma} = \lambda_Z$
- measure $WW, WZ, W\gamma \dots$ cross section and obtain limits on (or find) anomalous couplings $\Delta g_v, \Delta \kappa_v, \lambda_V$ (but form factors needed)
- recent example for $\sigma_{WW} + \sigma_{WZ}$ [CMS, 1210.7544]

Lorentz and CPT violation via effective theory

- assume spontaneous Lorentz breaking in underlying fundamental theory at very high scale $\Lambda \sim M_{\rm P}$ [Colladay, Kostelecky]
- SM/QED Lagrangian modified: $\mathcal{L}_{QED}^{eff} = i \, \bar{\psi} \gamma_{\mu}^{eff} D^{\mu} \psi \bar{\psi} m^{eff} \psi$

 $\gamma_{\mu}^{\text{eff}} = \gamma_{\mu} + c_{\mu\nu}\gamma^{\nu} + d_{\mu\nu}\gamma_{5}\gamma^{\nu} + e_{\mu} + \dots$

 $m^{\text{eff}} = m + a^{\nu} \gamma_{\nu} + b^{\nu} \gamma_{\nu} \gamma_{5} + \dots$

- induced parameters $c_{\mu\nu}$, $d_{\mu\nu}$, a^{ν} etc \implies (particle) Lorentz-violating and CPT-violating extension of SM
- theory still invariant under observer Lorentz transformations
- can test Lorentz and CPT invariance without having to understand Planck-scale physics !
- tests/limits on all energy scales: from study of hydrogen spectrum to effects in top quark (e.g. m_t vs $m_{\bar{t}}$)

PAUL SCHERRER INSTITUT

conclusions

- maybe the SM is even better than we think, $\Lambda_{NP} \gg \Lambda_{EW}$ is a possibility!
- if we can directly access BSM physics
 - with an explicit model coefficients of ET-operators can be computed
 - consistency checks between various observables (high-energy vs low energy)
- if we cannot directly access BSM physics
 - ET approaches offer a method to study large classes of BSM effects
 - ET applied at different levels, depending on what is integrated out and what is kept dynamical
- not everything can be covered by ET approach
 NP at low scales, but hidden by small couplings (e.g millicharged particles)
- recently a move towards using ET-framework in many different areas
 - ⇒ good news for combining cosmology, high-energy and high-precision frontier

directions how to proceed

 \implies dig deep