A laser-cooled electron source for single-shot femtosecond X-ray and electron diffraction

Jom Luiten

TUCE Technische Universiteit Eindhoven University of Technology

Thijs van Oudheusden – PhD student Peter Pasmans – PhD student Wouter Engelen – PhD student Adam Lassise – PhD student Marloes van der Heijden – Master student Joris Kanters – Master student Bas van der Geer, Marieke de Loos – Pulsar Physics (GPT) Peter Mutsaers Edgar Vredenbregt

Technical support

Louis van Moll Jolanda van de Ven Eddie Rietman Ad Kemper Harry van Doorn

FOM

FEI™

Netherlands Technology Foundation NL Foundation for Fundamental Research on Matter **FEI** Company

Structural dynamics...

resolve atomic length and time scales:

1 Å @ 100 fs

*CeO*₂ *catalyst nanoparticle*

Myoglobin

ultrafast diffraction

TU/e

ultrafast diffraction

radiation damage, repeatability \rightarrow single-shot!

Linac Coherent Light Source at SLAC X-FEL based on last 1-km of existing linac

1.5-15 Å Free Electron Laser

OPERATIONAL

Coherent Diffractive Imaging of Biomolecules TU/e

Photosystem I nanocrystals flowing in water jet. Pulse duration: 80 fs Patterns collected at 30 Hz 5 Tbyte data in one night!

Spokesperson: Henry Chapman for collaboration of Center for Free Electron Laser Science DESY, Arizona State University, Max Planck Institute for Medical Research, Max Planck Advanced Study Group at CFEL, PULSE Institute, SLAC, LLNL, Uppsala University

²⁹ Nov 2010 X-ray light sources: modern day cathedrals... ¹⁰

...how about small chapels?

Single-pass X-ray FEL

Overlap between electron and X-ray beam...

...lower normalized emittance \rightarrow less acceleration.

...lower normalized emittance \rightarrow less acceleration.

Cold source \rightarrow compact X-FEL!

Laser-cooled charged particle source

Magneto-Optical Trap (MOT)

N $\leq 10^{10}$ Rb atoms, R = 1 mm, n $\leq 10^{18}$ m⁻³ T < 0.001 K

Ultracold Plasma

Killian et al., PRL 83, 4776 (1999)

 $\tau = 1 \text{ ps} \rightarrow T_e \approx 10 \text{ K}$

Claessens et al., PRL 95, 164801 (2005)

Moreover...

- Each shot a new source no cathode problems;
- Up to 10 nA average current: 10 pC @ 1kHz;
- Ionization volume fully controlled by laser beam overlap;
- ultracold **ion** bunches \rightarrow model system for space charge dynamics.

TU/e

Outline

Ultracold electron beams

- photo-ionization experiments
- implications for compact X-FEL

Single-shot, femtosecond electron diffraction

- RF bunch compression
- ultracold electron source

Ultracold beam experiments

Ultracold beam experiments

Claessens et al., PRL **95,** 164801 (2005); Claessens et al., Phys. Plasmas **14**, 093101 2007; Taban et al., PRSTAB **11**, 050102 (2008); Reijnders et al., PRL **102**, 034802 (2009); Taban et al., EPL**91**, 46004 (2010); Reijnders et al., PRL **105**, 034802, (2010).

PSI - SwissFEL

TU/e

Ultracold beam experiments

^{28-01-2010 29}

29 Nov 2010

Implications for X-FEL: GPT simulations TU/e 0 rf-incoupler 0 **RF** cavity • 2-cell S-band • 50 MV/m • with laser ports

Implications for X-FEL: GPT simulations TU/e

Implications for X-FEL: GPT simulations

TU/e **Implications for X-FEL: GPT simulations**

Initial conditions

Charge MOT Density Ionizaton volume

Aspect ratio (R/L) Ionization time Initial temperature

1-100 pC $10^{18}/m^{3}$ Uniform in r Parabolic in z 1:10 1 ps 10 K

Cavity parameters

Maximum field Field-balance 1:1

50 MV/m

Implications for X-FEL: GPT simulations

Acceleration of 100 pC to 2 MeV

TU/e

Basic FEL equations:

$$\frac{\varepsilon_n}{\gamma} = \frac{\lambda_{rad}}{4\pi} \qquad \qquad \lambda_{rad} = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2}\right)$$

$$L_{g} = \frac{1}{\sqrt{3}} \sqrt[3]{\frac{2 mc \gamma^{3} \sigma^{2} \lambda_{u}}{\mu e K^{2} I}} = \frac{4 \pi \sigma^{2}}{\lambda_{rad}}$$

$$\rho_{FEL} = \frac{1}{4\pi\sqrt{3}} \frac{\lambda_u}{L_g} \qquad P = \gamma \frac{mc^2}{e} I \rho_{FEL}$$

$$\sigma_{W} = \frac{\rho_{FEL}}{2} \gamma \frac{mc^{2}}{e} \qquad I_{max} = \frac{Q}{\varepsilon_{z} / \sigma_{W}}$$

PSI - SwissFEL

Two scenarios: high and low charge

Charge	100	1	рС
Maximum field	50	20	MV/m
Slice emittance	0.1	0.02	micron
Assumed peak current	1	0.1	kA
Wavelength	0.5	0.1	nm
Energy	1.3	1.3	GeV
ρ _{FEL}	0.005	0.0016	
λυ	4	0.8	mm
Gain Length	37	23	mm
Power (1D)	6	0.2	GW
Repetition rate (10 ¹¹ /s)	0.1	10	kHz

PSI - SwissFEL

Single-shot femtosecond electron diffraction

SINGLE SHOT 0.1 pC (10⁶ e) , 100 keV

polycrystalline Au foil

average of 20 single shot pictures

polycrystalline Au foil

SINGLE SHOT 0.1 pC (10⁶ e) , 100 keV

(111) (220) (200) (311)

polycrystalline Au foil

9 nm Au foil U = 95 keV Q = 0.2 pC

Why use electrons?

X-rays: Thomson scattering

$$\sigma_{T} = 6.6 \times 10^{-29} \text{ m}^{2}$$

high density, bulk

Electrons: Rutherford scattering

 $\sigma_{R} > 10^{-24} {
m m}^{2}$

gas phase, surfaces

Complementary information!

Electrons vs X-rays

Property	<i>Electrons</i> (100 keV)	<i>Hard X-rays</i> (10 keV)
Wavelength / Å	0.04	1.2
Mechanism radiation damage	Secondary electron emission	Photoelectric effect
Ratio (inelastic/elastic) scattering	3	10
Energy deposited per elastic event	1	>1000
Elastic mean free path	1	10 ⁵ -10 ⁶

Electrons vs X-rays

Property	Electrons (100 keV)	Hard X-rays (10 keV)		
Wavelength / Å	0.04	1.2		
Mechanism radiation damage	Secondary electron emission	Photoelectric effect		
Ratio (inelastic/elastic) scattering	3	10		
Energy deposited per elastic event	1	>1000		
Elastic mean free path	1	10 ⁵ -10 ⁶		

1000× less radiation damage per count!

Electrons vs X-rays

Property	Electrons (100 keV)	Hard X-rays (10 keV)
Wavelength / Å	0.04	1.2
Mechanism radiation damage	Secondary electron emission	Photoelectric effect
Ratio (inelastic/elastic) scattering	3	10
Energy deposited per elastic event	1	>1000
Elastic mean free path	1	10 ⁵ -10 ⁶

10⁶ electrons sufficient for single-shot diffraction!

Electrons – why not?

Electrons – why not?

Source brightness & Coulomb forces

femtosecond laser photoemission...

10⁶ electrons from 100 µm spot

...electron bunch acceleration...

...electron bunch acceleration...

...electron bunch acceleration...

Luiten et al., PRL 93, 094802 (2004)

...evolution into *uniform ellipsoid*.

Luiten et al., PRL 93, 094802 (2004)

TU/e

Thijs van Oudheusden, TU/e:

hard-edged, uniform ellipsoids

U = 95 keV, Q = 0.2 pC

phosphor screen image

TU/e

Thijs van Oudheusden, TU/e:

hard-edged, uniform ellipsoids

U = 95 keV, Q = 0.2 pC

phosphor screen image

Bunch compression with 3 GHz RF cavity in TM₀₁₀ mode

Bunch compression with 3 GHz RF cavity in TM₀₁₀ mode

Bunch compression with 3 GHz RF cavity in TM₀₁₀ mode

The setup

The setup

Bunch length measurement with RF streak cavity

RF cavity TM₁₁₀ mode

Bunch length measurement with RF streak cavity

Limitation temporal resolution:

Cavity off

10 µm slit to improve temporal resolution

10 µm slit to improve temporal resolution

Cavity on

Streak cavity on

cavity off

PSI - SwissFEL

29 Nov 2010

Crystals of atoms or small molecules:

coherence length ≤ 1nm sufficient → conventional photocathode source OK!

Crystals of biomolecules...

a = 5-10 nm

TU/e

coherence length ≥ 10 nm required → *ultracold electron source!*

Summary

- Ultracold source interesting for compact X-FEL;
- Single-shot, sub-ps electron diffraction demonstrated;
- RF compression of 100 keV, 0.1 pC bunches: 10 ps \rightarrow 100 fs;
- Ultracold source & RF bunch compression \rightarrow single-shot, femtosecond electron diffraction of biomolecules.

TU/e