Beyond SASE and Saturation

X.J. Wang Brookhaven National Laboratory, NY 11973, USA Presented at SwissFEL & GFA Accelerator Seminars December 6, 2010

Acknowledgments

Colleague, collaborators and friends from BNL and around the world, specially students and postdocs whom I have the pleasure to work with.

XijieYuzhenJimFELLaserTheo Houjun Xi Dave **KF** Brookhaven Science Associates Theory Beam Beam

NATIONAL LABORATOR

U.S. Department of Energy

RF

Outline

Introduction

- NSLS and SASE
- Self Amplified Spontaneous Emission (SASE) an efficient noise amplifier.
- Source Development Laboratory (SDL)
- Beyond the SASE fully coherent, compact and cheaper
 - ✓ Single-spike (coherent) SASE)
 - ✓ Seeded FEL amplifiers.
 - Beyond saturation tapered undulator:
 - ✓ Efficiency improvement.
 - ✓ Spectra enhancement.
 - ✓ Transverse mode preservation.
- Conclusion remark.

Free Electron Laser Configurations

REPRINTED FROM:

OPTICS COMMUNICATIONS

Volume 50, No. 6, 15 July 1984

COLLECTIVE INSTABILITIES AND HIGH-GA

R. BONIFACIO *, C. PELLEGRINI National Synchrotron Light Source, Brookhaven Natio

L.M. NARDUCCI Physics Department, Drexel University, Philadelphia, F

pp. 373-378

and

Major FEL Concepts and Mile-Stone Experiments @ NSLS

- Harmonic (Murphy & Pellegrin, 1985).
- Start up (J. Wang & L.H.Yu, 1986).
- Universal Scaling (L.H. Yu et al, 1988).
- HGHG (L.H. Yu,1991).
 - FEL Experiments:
- TOK @ UV-ring (1980s).
- HGHG: 2nd (1999), 3rd (2002) and 4th (2006).
- VISA (2001).
- Superradiance FEL (2006)
- Tunability and FEL control (2006-2010).

Self Amplified Spontaneous Emission **SASE**

Evolution of FEL Pulses

• Due to noise start-up, SASE is a chaotic light temporally with M_L coherent modes (M_L spikes in intensity profile)

$$M_L \approx \frac{\text{bunch length}}{\text{coherence length}}$$

 $\frac{\Delta I}{I} = \frac{1}{\sqrt{M_I}}$

- Its longitudinal phase space is M_L larger than FT limit (rooms for improve!)
- Integrated intensity fluctuation:

Brookhaven Science Associates Z. Huang, NSLS Seeded XFEL Workshop (2002). U.S. Department of Energy

Transverse Coherence

Brookhaven Science Associates U.S. Department of Energy Courtesy of S. Reiche (UCLA/PSI)

Realization of Saturated SASE

- APS LEUTL 2001
- NSLS VISA
- NSLS SDL
- DESY FLASH
- SCSS @ Spring-8
- Other places SPARC, SDUVFEL?
- SNAL LCLS 2009

Saturation of SASE FELs

RESEARCH ARTICLES

Exponential Gain and Saturation of a Self-Amplified Spontaneous Emission Free-Electron Laser

S. V. Milton,^{1*} E. Gluskin,¹ N. D. Arnold,¹ C. Benson,¹ W. Berg,¹
S. G. Biedron,^{1,2} M. Borland,¹ Y.-C. Chae,¹ R. J. Dejus,¹
P. K. Den Hartog,¹ B. Deriy,¹ M. Erdmann,¹ Y. I. Eidelman,¹
M. W. Hahne,¹ Z. Huang,¹ K.-J. Kim,¹ J. W. Lewellen,¹ Y. Li,¹
A. H. Lumpkin,¹ O. Makarov,¹ E. R. Moog,¹ A. Nassiri,¹ V. Sajaev,¹
R. Soliday,¹ B. J. Tieman,¹ E. M. Trakhtenberg,¹ G. Travish,¹
I. B. Vasserman,¹ N. A. Vinokurov,³ X. J. Wang, G. Wiemerslage,¹

B. X. Yang¹

VOLUME 88, NUMBER 10 PHYSICAL REVIEW LETTERS

Generation of GW Radiation Pulses from a VUV Free-Electron Laser Operating in the Femtosecond Regime

V. Ayvazyan,⁴ N. Baboi,^{7,16} I. Bohnet,⁵ R. Brinkmann,⁴ M. Castellano,⁸ P. Castro,⁴ L. Catani,¹⁰ S. Choroba,⁴ A. Cianchi,¹⁰ M. Dohlus,⁴ H. T. Edwards,⁶ B. Faatz,⁴ A. A. Fateev,¹³ J. Feldhaus,⁴ K. Flöttmann,⁴ A. Gamp,⁴ T. Garvey,¹⁴ H. Genz,³ Ch. Gerth,⁴ V. Gretchko,¹¹ B. Grigoryan,¹⁹ U. Hahn,⁴ C. Hessler,³ K. Honkavaara,⁴ M. Hüning,¹⁷ R. Ischebeck,¹⁷ M. Jablonka,¹ T. Kamps,⁵ M. Körfer,⁴ M. Krassilnikov,² J. Krzywinski,¹² M. Liepe,⁷ A. Liero,¹⁷ T. Limberg,⁴ H. Loos,³ M. Luong,¹ C. Magne,¹ J. Menzel,¹⁷ P. Michelato,⁹ M. Minty,⁴ U.-C. Müller,⁴ D. Nölle,⁴ A. Novokhatski,² C. Pagani,⁹ F. Peters,⁴ J. Pflüger,⁴ P. Piot,⁴ L. Plucinski,⁷ K. Rehlich,⁴ I. Reyzl,⁴ A. Richter,³ J. Rossbach,⁴ E. L. Saldin,⁴ W. Sandner,¹⁵ H. Schlarb,⁷ G. Schmidt,⁴ P. Schmüser,⁷ J. R. Schneider,⁴ E. A. Schneidmiller,⁴ H.-J. Schreiber,⁵ S. Schreiber,⁴ D. Sertore,⁹ S. Setzer,² S. Simrock,⁴ R. Sobierajski,^{4,18}
B. Sonntag,⁷ B. Steeg,⁴ F. Stephan,⁵ K. P. Sytchev,¹³ K. Tiedtke,⁴ M. Tonuti,¹⁷ R. Treusch,⁴ D. Trines,⁴ D. Türke,¹⁷ V. Verzilov,⁸ R. Wanzenberg,⁴ T. Weiland,² H. Weise,⁴ M. Wendt,⁴ I. Will,¹⁵ S. Wolff,⁴ K. Wittenburg,⁴ M. V. Yurkov,^{13,*} and K. Zapfe⁴

VOLUME 88, NUMBER 20

PHYSICAL REVIEW LETTERS

20 May 2002

Experimental Characterization of Nonlinear Harmonic Radiation from a Visible Self-Amplified Spontaneous Emission Free-Electron Laser at Saturation

A. Tremaine,¹ X. J. Wang,² M. Babzien,² I. Ben-Zvi,² M. Cornacchia,³ H.-D. Nuhn,³ R. Malone,² A. Murokh,¹ C. Pellegrini,¹ S. Reiche,¹ J. Rosenzweig,¹ and V. Yakimenko²
¹Department of Physics & Astronomy, UCLA, Los Angeles, California 90095
²Accelerator Test Facility, NSLS, BNL, Upton, New York 11973
³SSRL, SLAC, Stanford, California 94309
(Received 20 September 2001; published 3 May 2002) A compact free-electron laser for generating coherent radiation in the extreme ultraviolet region nature photonics |VOL 2| SEPTEMBER 2008

11 MARCH 2002

LEUTL Gain Curve @ 530 nm on March 10, 2001

U.S. Department of Energy

VISA Experimental setup

U.S. Department of Energy

LCLS Performance with VISA Beam Quality

Estimated Slice Emittance:	0.8 mm mrad
Average Charge:	170 pC
RMS Gun Bunch Length:	900 fs
Bunch Compression Factor:	23
RMS Bunch Length at Undulator:	40 fs
Peak Current:	1700 A
Energy Spread:	1×10 ⁻⁴
Wavelength	0.15 nm
Gain Length	4.4 m
Saturation Length:	90 m
Peak SASE Power:	7 GW

Results of Simulations with the Computer Code GINGER using Electron Beam Qualities measured at VISA. The linac bunch compression factor is 23, which is smaller than the present design value.

This set of parameters can be further optimized and other working points will be certainly developed when LCLS will operate.

Undulator Gain Length Measurement at <u>1.5 Å</u>: 3.3 m

Beyond SASE - Next Generation XFEL

NSLS SDL Facility

300 MeV S-Band Linac

BNL Photoinjector IV

NATIONAL LABORATORY

High-brightness e⁻ R&D

Ultrafast Science @ SDL

A Platform for Ultrafast Science
Strongly correlated electron materials.
Ultrafast Phase Transitions
Lattice Vibration Dynamics.
Warm Dense Matter.

• Photo-reaction in Gas Phase.

Next Generation e⁻ Source R&D •Thermal emittance studies. •Beam dynamics for space charge dominated beam. •Next generation BNL RF gun R&D.

Experimental Demonstration of Coherent SASE @ the NSLS SDL

700 – 800 nm Coherent SASE:
•Validate coherent SASE physics.
•Verified the short pulse generation.
•Sophisticated optical diagnostics.

Gun + Chicane

Expected Coherent SASE Performance

e⁻ parameters: Q: 100 pC σ_z (rms): 120 fs ϵ : < 2 mm-mrad

Brookhaven Science Associates U.S. Department of Energy Coherent SASE: • λ : 700 – 800 nm • σ_z (FWHM): 100 fs • E: ~ 10 µJ

Experimental Set-up

Single spike SASE

Coherent SASE Spectral Evolution

U.S. Department of Energy

Bro

Single spike SASE

Spectral Before and After the Saturation.

Single spike SASE - Mode

BROOKHAVEN NATIONAL LABORATORY

Transform Limited SASE Observation

Laser Seeded FEL Amplifiers

Laser or HHG Seed

- First Operation of a Free Electron Laser", D.A.G. Deacon et al., PRL 38, 892 (1977).
- "Microwave Radiation from a High Gain Free Electron Laser Amplifier", T.J. Orzechowski et al, PRL 54, 889 (1985).
- X.J. Wang et al., APL 91, 181115 (2007).
- G. Lambert et al., Nature Physics 4, 296 (2008).

- "High-Gain Harmonic-Generation Free-Electron Laser", L.H. Yu et al, Science **289**, 932 (2000).
- "First Ultraviolet High Gain Harmonic Generation Free Electron Laser", L.H. Yu et al, PRL 91, 074801-1 (2003).
- "The First Lasing of 193 nm SASE, 4th Harmonic HGHG & ESASE at the NSLS SDL", X.J. Wang et al, Proc FEL06, 18 (2006).
- Demonstration of the Echo-Enabled Harmonic Generation Technique for Short-Wavelength Seeded Free Electron Lasers, D.Xiang et al. Phys. Rev. Lett. 105, 114801 (2010).
 U.S. Department of Energy

SDL laser seeded FEL Amplifier Detuning Experiment

Wavelength (nm)

Detuning: Electron beam energy deviates from the resonance:

•FEL spectral is stable.

•FEL efficiency mdoubled.

X.J. Wang et al., APL 91, 181115 (2007).

Beyond SASE - Next Generation XFEL

4th Harmonic HGHG @ NSLS SDL

Harmonic FEL Spectral Tuning

Beyond Saturation: Tapering for Efficiency and Coherence Preservation

Tapering is one of the key technologies to improve and preserve the FEL performance.

Brookhaven Science Associates U.S. Department of Energy

X.J. Wang et al, PRL 103, 154801 (2009).

FEL Spectrum: Experiment vs. Simulation for Uniform & Tapered Undulators

Transverse Mode Evolution of a FEL Pulse

M² is the quantity measuring the FEL beam mode contents (quality).

e beam
$$\sigma_x(z)^2 = \varepsilon_x(\beta_x^0 + \frac{1}{\beta_x^0}(z - z_0)^2)$$
 $\sigma_x \qquad \varepsilon_x \qquad \beta_x^0$
 $\sim \qquad \sim \qquad \sim$

laser
$$\sigma_r(z)^2 = M^2 \frac{\lambda}{4\pi} (Z_R + \frac{1}{Z_R} (z - z_0)^2) \quad \sigma_r \quad M^2 \frac{\lambda}{4\pi} \quad Z_R$$

Transverse Mode Evolution of a FEL Pulse

Transverse Beam Quality Improvement

U.S. Department of Energy

Conclusion Remark

XUV Photochemistry

Brookhaven Science Associates U.S. Department of Energy Tapering is the key technology to improve and preserve the FEL performance beyond the saturation (both SASE and seeded FELs).

Great progress made in seeded FEL amplifiers, more exciting results expected in next few years: •HHG seeding in soft X-ray.

•Experimental demonstration of new schemes – self seeding, EEHG, HEHG...

•Hard X-ray Oscillator FEL.

Ultra-Short Electron Pulse Generation @SDL

We report the measurement of very short, high brightness bunches of electrons produced in a photocathode rf gui **P. Piot et al, Phys. Rev. STAccel. Beams 6, 033503 (2003).** The bunch were measured by passing the energy chirped the electron beam through a momentum selection slit while varying the phase of the rf linac. The bunch compression as a function of rf gun phase and electric field at the cathode were investigated. The shortest measured bunch is 370 ± 100 fs (at 95% of the charge) with 2.5×10^8 electrons (170 A peak current); the normalized rms emittance of this beam was measured to be 0.5π mm mrad and the energy spread is 0.15%. [S1063-651X(96)51110-4]

X. J. Wang et al, Phys. Rev. E, 54, No.4, R3121 -3124 (1996). U.S. Department of Energy

Cutting Edge Accelerator Science at the SDL

NATIONAL LABORATORY

U.S. Department of Energy

Superradiance in a Short Pulse FEL Amplifier Beyond Saturation

