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Crystallography is highly 
successful

Can we do better?



Errors in experimental data

Error = random + systematic

Random = counting + detector

Systematic = Radiation damage 

+ absorption + non-linearities 

+ vibrations + instabilities + …

 

“If you don’t have good data, then you have no data at all.”  -Sung-Hou 
Kim

“If you don’t have good data, then you must learn statistics.” - James 
Holton

Multiplicity of n reduces the 
random error by √n

Multiplicity may reduce the 
systematic error by √n, but not 
necessarily!



Crystallographic statistics - which 
indicators are being used?

• Data R-values:  Rpim < Rmerge=Rsym < Rmeas  

• Model R-values: Rwork/Rfree

• I/σ (for unmerged or merged data !)
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Precision can be calculated for …
either the unmerged (individual) observations: 
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… or for the merged data:

R
pim

, CC
1/2

, I/σ
merged

It is essential to understand the difference, but it is not in 
the papers or textbooks!

Precision of unmerged and merged 
data
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Decisions and compromises

Which high-resolution cutoff for refinement?
Higher resolution means better accuracy and maps
But: high resolution yields high Rwork/Rfree!
Basic questions: what to optimize? Is the data/model R-value a good 
predictor/indicator of model quality? How good need the data be; to 
what extent do the data influence the refinement result? What to refine, 
and when to stop? Overfitting?

Which datasets/frames to include into scaling?
 
Reject negative observations or unique reflections?

The reason why it is difficult to answer “R-value questions” is that 
no proper mathematical theory exists that uses absolute 
differences; concerning the use of R-values, Crystallography is 
disconnected from mainstream Statistics



Conflicting views

„An appropriate choice of resolution cutoff is difficult and sometimes seems to 
be performed mainly to satisfy referees ... Ideally, we would determine the 
point at which adding the next shell of data is not adding any statistically 
significant information ... Rmerge is not a very useful criterion.“
P. Evans (2011) An introduction to data reduction: space-group determination, 
scaling and intensity statistics. Acta Cryst. D67, 282
 
"At the highest resolution shell, the Rmerge can be allowed to reach 30–40% for 
low-symmetry crystals and up to 60% for high-symmetry crystals, since in the 
latter case the redundancy is usually higher."
A. Wlodawer, W. Minor, Z. Dauter and M. Jaskolski (2008) Protein 
crystallography for non-crystallographers, or how to get the best (but not 
more) from published macromolecular structures. FEBS J. 275, 1

“... the accepted resolution limit is where the I/sigI falls below about 2.0. R
merge

 

may then reach 20-40%, depending on the symmetry and redundancy.“
Z. Dauter (1999) Data-collection strategies. Acta Cryst D55, 1703



2010 PDB depositions



The asymptotic behaviour of model and 
data R-values is different at high resolution 

Data R-values (Rpim , Rmerge , Rmeas): with 
resolution, go to infinity since the numerator 
is constant (determined by background), 
and the denominator approaches zero

Model R-values (Rwork/free): the ratio of numerator 
and denominator approaches a constant for a 
random or wrong model (Wilson 1950), or for 
random data (Evans & Murshudov 2013)

This means that at high resolution, a 
quantitative relation cannot exist 
between model and data R-values ! 

Rmerge=
∑
hkl

∑
i=1

n

∣I i (hkl )− Ī (hkl )∣
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Crystallographic reasoning

1. Better data allow to obtain a better model

2. A better model has a lower Rfree, and a lower 
Rfree-Rwork gap

3. Comparison of model R-values is only 
meaningful when using the same data

4. Taken together, this leads to the „paired 
refinement technique“: compare models in terms 
of their R-values against the same data.



Example: Cysteine DiOxygenase (CDO; PDB 
3ELN) re-refined against 15-fold weaker data

Rmerge ■

Rpim  ●

Rfree

Rwork

I/sigma



Is there information beyond the 
conservative hi-res cutoff?

“Paired refinement technique“:

• refine at (e.g.) 2.0Å and at 1.9Å 
using the same starting model 
and refinement parameters
• since it is meaningless to 
compare R-values at different 
resolutions, calculate the overall 
R-values of the 1.9Å model at 
2.0Å (main.number_of_macro_cycles=1 
strategy=None fix_rotamers=False 
ordered_solvent=False)

• ΔR=R1.9(2.0)-R2.0(2.0)



  

Do the maps really get better?

• cooperation with JCSG: Henry van den Bedem, 
Ashley M. Deacon, Abhinav Kumar

• identified 5 structures where re-processing of 
existing raw data permits to extend the resolution 
by another 0.2-0.3Å, with full completeness

• reprocessing with XDS/MOSFLM; refinement with 
refmac/phenix.refine

• calculate real-space CC of map and model, using 
EDSTATS (CCP4) or phenix.resolve



  

Example 1/5



Summary I
 

• Rmerge should no longer be considered as useful for 
deciding on a high-resolution cutoff

• The paired refinement technique can prove that 
data should be used to higher resolution than a 
(Rmerge-based) conservative cutoff suggests



measuring data quality with a 
correlation coefficient

• Correlation coefficient has clear meaning and well-known 
statistical properties 

• Significance of its value can be assessed by Student's t-test 
(e.g. CC>0.3 is significant at p=0.01 for n>100; CC>0.08 is 
significant at p=0.01 for n>1000)

• Apply this idea to crystallographic intensity data: use “random 
half-datasets” → CC1/2   (called CC_Imean by SCALA/aimless, now CC

1/2
 )

• From CC1/2 , we can analytically estimate CC of the full dataset 
against the true (usually unmeasurable) intensities using

(Karplus and Diederichs (2012) Science 336, 1030) 

CC*=√ 2CC1/2
1+CC 1/2



Data CCs

CC1/2 ◊

CC* Δ

I/sigma



Model CCs 

• We can define CCwork, CCfree as CCs calculated on Fcalc
2 of the 

working and free set, against the experimental data
• CCwork and CCfree can be directly compared with CC* 

―    CC*

Dashes: CCwork , 
CCfree against 
weak exp‘tl data

Dots: CC‘work , 
CC‘free against 
strong 3ELN 
data



Quantitative relation between data 
and model CCs

• Refinement should make CCwork converge 
towards CC* (from lower values)

• Inadequate model, or wrong space group, or 
systematic errors in data processing: 
CCwork remains < CC*

• If CCwork > CC*: the model is closer to the data, 
than the truth is to the data : “overfitting”



Summary II
 
• CC1/2 assesses the statistical significance of data

•    tells us the agreement between 

experimental data and true data (!)

• CC* is the upper limit for the CCwork  /CCfree model quality 

indicators

• CC1/2, CC*, CCwork/CCfree table can be obtained from 1.8.2   

Phenix distribution; the routine is called phenix.cc_star

CC*=√ 2CC1/2
1+CC 1/2



Four new concepts for improving crystallographic 
procedures

Image 
courtesy of 

P.A. Karplus
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