PAUL SCHERRER INSTITUT

Standard Diagnostics for SwissFEL Rasmus Ischebeck, for the GFA Diagnostics Section

Standard Diagnostics for SwissFEL

> Transverse profile imager (DSCR)

> Synchrotron radiation imager (DSRM)

> Electron Beam position monitor (DBPM)

> Electron bunch arrival monitor (DBAM)

> Loss monitor (DBLM)

Transverse Profile Imager (DSCR)

Transverse Profile Imager (DSCR)

> Specifications

Quantity	"Overview"	"Measurement"		
Resolution	10 µm			
Field of view	6 mm (h) × 8 mm (v)	6 mm (h) × 15 mm (v)		
Sensitivity	ionizing radiation			
Image frame rate	10 Hz	100 Hz		
Length of vacuum chamber	137 mm			
Required space outside of vacuum chamber	tbd.			

Transverse Profile Imager (DSCR)

> Emittance Measurement

The smallest beam in this measurement is 50 μm rms. Beams of 10 μm rms have been measured.

Rasmus Ischebeck

Synchrotron Radiation Imager (DSRM)

Technical Realization-BC 250 MeV Injector Test Facility

Gian Luca Orlandi 6

Rasmus Ischebeck

Synchrotron Radiation Imager (DSRM)

Conceptual Design-BC SwissFEL

	BC1	BC2
Nominal bending angle θ	3.85 deg	2.15
Mechanical bending angle range	-0.1 ↔ 4.6 deg	-0.1 ↔ 3.8 deg
Operational bending angle	2.85 ↔ 4.6 deg	1.15 ↔ 3.15 deg
Horizontal Dispersion	419.6 mm	281.56
Nominal Beam Energy	350 MeV	2100 MeV
Range for transverse movement	-10 ↔ 500 mm	-10 ↔ 495 mm
Beam Size (rms) at the 3 rd dipole	6.0 mm	1.2 mm
Field of View (in-vacuum mirror length=68 mm)	68 mm	68 mm
Projected pixel size	31 μ m	38 μ m
Relative Energy Spread Resolution	7.0*10^-5	1.4*10^-4
Lens focal length	400 mm	500 mm
Lens diameter	143 mm	125 mm
Camera (PCO.EDGE) pixel size	6.5x6.5 μ m^2	6.5x6.5 μ m^2
Camera Resolution	hor x ver = 2560x2160	hor x ver = 2560x2160
Camera Frame Rate	100 Hz	100 Hz
Separation in-vacuum mirror edge and central trajectory of the beam	40 mm	61.5 mm

Synchrotron Radiation Imager (DSRM)

Prototype Results - 250 MeV Injector Test Facility (SITF)

Rasmus Ischebeck

Numerical simulations, thanks to S.Bettoni

Gian Luca Orlandi 8

> Technical Design: Linac Pickup

> Technical Design: Parameters

	Injector	Linac	Undulator (Baseline)	Undulator (Alternative Option)	
Pickup Type	Cavity (2 Resonators, Mode-Suppressing Couplers)				
Frequency	3.3GHz			4.8GHz	
Loaded Q	~40 ~70		~ 00- 000		
Material	Stainless Steel			Cu-Coated Steel	
Gap Width	TBD	7mm	7mm	TBD	
Waveguide Depth	TBD	I4mm	25mm	TBD	
Signal [V/mm/nC]	TBD	7.1	9.3***	TBD	
RFFE	IQ Downconversion*				
IF Frequency	~0Hz			~50MHz	
ADC	16-Bit 160MSPS (Linac/Injector: 12-Bit 500MSPS Option)**				

* Undulators (Alternative Option): Single-channel downconversion feasible, to be evaluated.

** Sample rates of available ADCs for European XFEL (E-XFEL) BPM electronics built by PSI

*** E-XFEL Undulator: 2.9 V/mm/nC (Q=70) -> ~3x better low charge resolution for SwissFEL.

> Technical Design: RF Front-End

> Results: Prototype Beam Test

Correlation of 3 E-XFEL Undulator Cavity BPMs

Electron bunch arrival monitor (DBAM)

BAM Detection Principle

Rasmus Ischebeck

Ι.

Vladimir Arsov 13

Electron bunch arrival monitor (DBAM)

BAM Front End Design in SITF (BOX Var. 1)

Dimensions (with the shielding):

640x450 mm (cables and cable radii not included)

Basic Components:

EOMs (current status): 2x12 GHz (Covega) . EDFAs with controllers (custom design, Photop, CN) linear motor with 10 nm encoder (Parkem) linear motor controller stepper motor T° stabilization of the baseplate (T_{pk-pk} < 0.05°C) T° & RH monitoring EPICs control, archiver channels EOM bias control and WP setting Radiation shielding (sufficient for SITF, insufficient for SwissFEL) possibility for channel extension (further EOMs)

Box Var. 2 with imporoved thermal management

Loss Monitor (DBLM)

Rasmus Ischebeck, SwissFEL Diagnostics Review: Loss Monitors

Loss Monitor (DBLM)

- > Fiber-based system
 - > Compact, low installation costs
- > All electronics outside the accelerator tunnel
- > We need a large dynamic range
 - > Foresee to use vacuum PMTs
- > Digitization by fast ADC

