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Innermost part of most HEP 
Experiments are the tracking 
systems 
 
• Outer parts for momentum 

measurement  
• Inner parts for vertexing,  

and (if pixels are used) for 
track seeding 
 

Most vertex detectors are  
based on silicon 
• Suitable properties (signal, carrier life time, can be doped …) 
• Low Z (material budget) 
• Good availability in high quality, sufficiently cheap 
• Well know processing technology (on principle) 
Competitors 
• Compound semi conductors: Not sufficiently radiation hard (high Z attractive for X-ray detection) 
• Diamond: Expensive, not easily available (esp. single crystal) but very attractive features  R&D 

ongoing 
 

Introduction 
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Principle of most tracking devices 
• A particle (or a photon) ionizes the detection medium 
• The charge carriers are separated by an E-field 
• Their drift induces charge on the collection electrodes 
• If collection electrons are segmented, a spatial information is obtained 
• Ionization energy needed for electron – ion separation 

• Argon: ~26 eV 
• Silicon: 3.6 eV 

“Ohmic” detector 
• Assume a piece of silicon: area 1cm2 thickness 0.3mm 
• Charge released from a m.i.p.: ~25000 e- ~ 4fC 
• Mobility (electrons): ~1400cm2/Vs, targeted collection time: 10ns 
• Signal current I = 4 fC/10ns = 400 nA (easy to detect) 
• To achieve 10ns collection time an electric field of 

E=v/m=0.03cm/10ns/1400cm2/Vs~ 2100 V/cm is needed  
or a bias of 60V 

But: 
• Silicon is a semiconductor 

• Highest practical resistivity: 10kΩcm  300Ω (our piece) 
• Current at 60V: 200mA 
• For very small cells (pixels) A~10-4cm-2 good S/N possible but overall power 

consumption prohibitive (12W/cm2) 
• Large band gap materials (diamond) work in this regime 

• For “high” temperature Silicon: suppress leakage current  pn-junction 
 
 
 

 
 
 

 

Particle detection in Silicon 

12.09.2013 T. Rohe, PSI, page 3 



pn-junction 

A diode is formed by an interface between p- and n-doped silicon: 
• Majority carriers diffuse to the other side 

Jdiff= -Dn ∇n or Jdiff= Dp ∇p 
with D = kTµ/e (Einstein relation) 

• Recombine with “local” majority carriers  zone with reduced 
concentration of free carriers (depletion zone) 

• Remaining acceptor/donor ions cause electric field 
Jdrift = -e n µn E or Jdrift = e p µp E 

• Both currents cancel each other  relation field vs. position 
• Forward bias  exponential IV curve 
• Reverse bias 

• Depletion zone is increased  
• Current is suppressed (only thermal generation) 

• In case on side of the junction is much heavier doped than the 
other and the junction is abrupt:  

• W = sqrt(2ε0εSiV/eND)  depends only on bulk doping 
• Constant bulk doping  linear field 
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IV curve 

• Dark current by thermal generation of e-h-
pairs in the space charge region (volume) 

• Effected by defects in the crystal 
• Heavily increased by radiation 

• Exponential Temperature dependence 
Jvol ~ T2 exp(-Eg/2kT) or factor 2 every 8K 

 

Other sources of leakage current 
• Thermal generation at interfaces/surfaces 

• Segmentation 
• Process quality 
• Radiation 

• Charge multiplication (break down) 

12.09.2013 T. Rohe, PSI, page 6 



Strip detector (DC-coupled) 

Simplest way to create diodes 
• Implant Boron over a photoresist pattern into high resistive 

n-type silicon 
• Electrodes typically have the shape of strips are connected 

to the read out electronics by wire bonding 
Features: 
• W = sqrt(2ε0εSiV/eND)  depends only on bulk doping 
• Full depletion for 300µm and n=1012cm-2 ~ 70V 
• Constant bulk doping  linear field 
• Strip implant forms junction   peak at strip 
• High dose implant on back side (ohmic contact, break down) 
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1st strip trackers 
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Left: 1st strip tracker at FNAL-E706 (around 1980) 
• Signals were still routed to crates using flat band 

cables 
Top: CERN WA82 (1986) 
• Signal amplifiers built with discrete components 

 
Due to the bulky readout electronics only used in fixed 
target experiments 
ASIC readout  Collider experiments (LEP, HERA) 



HERA -CST 

• Designed and built at PSI (1992-96) 
• Read out with ASIC (apc128) 

• Readout electronics placed in small hybrids 
• 128 channels 50µm pitch 
• Digital controlled analogue signal processing 
• Very universal (e.g. now used for telescope) 
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HERA -CST 

• Double sided read out 
• N-side isolation 
• Ground of electronics (one side on HV) 

• Readout via optical fibers 
• Control signals coupled in via capacitors 

• Luminosity at HERA was small 
• 3 sensors daisy chained 
• 90 degree stereo angle  

• Double layer metal on n-side 
 Large capacitance  high noise 
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AC-coupled strip detector 

• Bias resistor and coupling capacitor are difficult to 
implement on an ASIC 

• Implementation on sensor is possible 
• Capacitor: SiO2 layer 

• Due to large strip size, a few 100nm thick layer 
possible 

• Can be very stable up to 100V 
• Long poly resistor (R> 1MΩ) 

• Yield of capacitor is cost driving 
• Every capacitor/strip has to be tested 
• Yield can be improved by applying a sandwich layer 

of Si3N4 
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CDF 
Pioneering in 2 respects 
• 1st “large area” application: several m2 

• 1st strip sensors which suffered substantial 
radiation induced degradation 

Sensor choice: Double sided AC coupled sensors, 
both readout electronics on GND:  
• Voltage drop over coupling capacitor 
• Limit of max. bias to 170V  
Solution: Insertion of “layer00”: 
• Single sided, stable > 600V 
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LHC-Experiments (e.g. CMS) 

The requirements to CMS tracker 
• Intermediate and outer regions (r>20cm) 

• “Moderate” radiation hardness required 
• Can be archived with “standard” sensors 
• Small stereo angle 

• Less ambiguities 
• No double metal required to mount ASICs at 

“stave” end 
• Loss in z-resolution 

• Very large area (~200m2)  cost 
• Single sided p-on-n sensors  
• Double sided  2 sensors back-to-back 
• Large wafers (150mm instead of 100mm)  

• Inner region (r< 20cm) 
• High track density 

• No ambiguities  
• Zero suppression and local  data storage 

• Radiation induced degradation (sensor and ROC) 
 Pixels 
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Radiation damage in Silicon 
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• Surface damage 
– Mainly by ionisation in the covering layers 
– Built up of positive surface charge 
– Danger of breakdown close to n-side electrodes 
 careful choice of n-side isolation 

• Crystal damage by displacement 
• Leakage current increase proportional to Φ  

 Φ ~ ?? (depending much on T) 
– power load (cooling), power 
– Preamplifier (if DC coupled)  

• Change of internal electric field  
Φ > a few 1014 Neq/cm2 (∫L > ~100/fb) 
– Bias voltage has to be  
– Charge is focused  spatial resolution degrades  

• Reduced signal (trapping)  
Φ > ~1015 Neq/cm2 (∫L > ~250/fb):  
– Possibly charge amplification > 1kV  RD50 
– High voltage is presently limited by connectors, 

cables and power supplies 
 

10 MeV p 24 GeV p 1 MeV n 

[Mika Huhtinen NIMA 491(2002) 194] 
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Leakage current 

12.09.2013 T. Rohe, PSI, page 15 

Leakage current was measured with a very 
large number of small diodes with the guard 
current separated 
• Volume current only  
• Segmented sensors might be different 
Result 
• Current density is proportional to the 

Fluence 
• Damage constant α = ∆I / (V Φeq) 

independent of 
– Kind of particle 
– Fluence 
– Growth method of the crystal 
– Impurities of the crystal 
 NIEL hypothesis correct for Ileak 

• Leakage current of diodes is used for 
fluence calibration or as measurement of κ 
 

• Annealing 
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Internal electric field 
• Highest electric field moves from p-side to  

n-side (“type inversion”) 
• Double peak field builds up 
• Total amount of space charge increases 

• Minimum bias voltage increases 
• Depends on  

• material choice 
• kind of radiation (even compensating effects with 

proton/neutron irradiation) 
• Effective doping (“average”) described by 

Hamburg model  (creation and anneling) 
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Trapping 

Charge trapping displays presently the absolute 
operational limit 
• Not dependent on material properties (present 

status) 
• Decreases anti proportional to fluence 
• Presently measured only up to 1015Neq/cm2 

• Holes and electron have about same inverse 
trapping time 

• Annealing is different for electrons and holes 
• Electrons are 3× more mobile, their collection 

is of advantage ( n-in-n/p sensors) 
• Collection distance after 1015Neq/cm2   ~ 200µm 
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CMS pixel sensor concept 
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Collect electrons (n-side readout) 
• Less prone to trapping 
• Larger Lorentz angle 
• n-side isolation required  
Avoid problems in module design 
• N-Substrate  
• Guard rings (and junction) on back side 
• All sensor edges on ground potential 
• Double sided processing 
Pixel cell layout  
• Moderated p-spray with bias grid  

− Reliable IV measurements prior to flip chip 
procedure 

− Only moderate over depletion necessary  
− Small partly insensitive area of the order of 2% (not 

effect on efficiency in CMS)  
• Small gaps between implants 

− homogenous drift field 
• Minimize effect of field separation on charge 

sharing 
• Avoid flied peaks (high voltage capability in 

irradiated state) 
− higher C ~ 80fF (Not critical for performance) 



Excursion: N-side isolation 
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Fixed oxide charge  
• Creates a conducting channel between n-electrodes 
• Determines the electrical field in the critical area 

close to the surface 
• Technology parameters (dose of the isolation 

implant has to be adjusted) 
P-Stops (FPix) 
• High boron dose (adjustment uncritical) 
• Alignment important 
• (Breakdown after irradiation if dose is too high) 
P-Spray, mod. p-Spray (BPix) 
• HV-stability of un-irradiated device critical 
• Boron dose to be adjusted 

– High enough to provide isolation  
– Low enough to enable HV operation of new 

devices (e.g. during module production) 
• Narrow gaps possible (without moderation) 

– Punch through structures  
– Homogenous drift field at high voltages 
 



Different pixel designs in 2003 
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Sintef (Ring): 
• Only 1 un-irradiated 

(measured at 300V) 
 
 
CiS (Ring) 
• 1 un-irradiated 

(measured at 300V) 
• Each 1 irradiated to 3 

and 8×1014 measured 
between 100 and 600V 

CiS (Spray) 
• 3 unirrad (Gap 20,15 & 

30) 
• 2 (gap 20) irradiated to 8 

and 11×1014 measured 
between 100 and 600V 

 
CiS (Cross) 
• 1 un-irradiated 
• 1 irradiated to 8×1014 (bad 

bump-yield) 

After many test beam and lab measurements we decided for the p-spray design 



Check of pixel isolation 
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• Use special test structure which “imitates” the 
biasing structure 

• Applied 0.6V (~0.5 * Vana) 
• Measured the current as function of the back 

side voltage 
– Some over depletion needed to separate bias 

grid from pixels 
– No dramatic change with radiation 

• Chosen gap of 7 µm 



CMS pixel sensor concept 
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Collect electrons (n-side readout) 
• Less prone to trapping 
• Larger Lorentz angle 
• n-side isolation required  
Avoid problems in module design 
• N-Substrate  
• Guard rings (and junction) on back side 
• All sensor edges on ground potential 
• Double sided processing 
Pixel cell layout  
• Moderated p-spray with bias grid  

− Reliable IV measurements prior to flip chip 
procedure 

− Only moderate over depletion necessary  
− Small partly insensitive area of the order of 2% (not 

effect on efficiency in CMS)  
• Small gaps between implants 

− homogenous drift field 
• Minimize effect of field separation on charge 

sharing 
• Avoid flied peaks (high voltage capability in 

irradiated state) 
− higher C ~ 80fF (Not critical for performance) 



Excursion 2: guard rings 

Prevent  
• Edge break down by gently 

reducing the potential  
between diode and edge 

• Current injection by  
preventing the space charge 
region from reaching the  
edge 
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CMS pixel sensor concept 

12.09.2013 T. Rohe, PSI, page 24 

Collect electrons (n-side readout) 
• Less prone to trapping 
• Larger Lorentz angle 
• n-side isolation required  
Avoid problems in module design 
• N-Substrate  
• Guard rings (and junction) on back side 
• All sensor edges on ground potential 
• Double sided processing 
Pixel cell layout  
• Moderated p-spray with bias grid  

− Reliable IV measurements prior to flip chip 
procedure 

− Only moderate over depletion necessary  
− Small partly insensitive area of the order of 2% (not 

effect on efficiency in CMS)  
• Small gaps between implants 

− homogenous drift field 
• Minimize effect of field separation on charge 

sharing 
• Avoid flied peaks (high voltage capability in 

irradiated state) 
− higher C ~ 80fF (Not critical for performance) 



Bare module 
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Pixel Sensor with  
UBM & Indium balls 

16 tested CMOS ROC chips with 
UBM & Indium  

Bump bonded  
“raw module” 



CMS barrel pixel module 
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Half shell of the detector 
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Insertion in CMS 
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Pixel 
Installation 
28. July 2008 

Barrel Pixel 
Detector 
shifting into 
CMS  



Development of signal height 
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CMS 
• Performance fully satisfactory 
• Radiation level is still low but above the point of 

space charge sign (“type”) inversion  
Radiation hardness studies 
• Up to ~1.2×1015Neq/cm-2: 

− Several test beam studies in the years 
2002-06 

− Including tilt angle, B-field, and threshold 
− Summarized in NIM A 583 (2008) 25-41  

• Higher fluences up to ~3×1015Neq/cm-2 
− Source tests. Dac settings and trimming 

procedure not 100% settled 
 Fluences up to ~5×1015Neq/cm-2  

− ATLAS IBL (same sensor concept and 
vendor) 

 
Signal height and detection efficiency fully 
sufficient for the targeted radiation level of 
1.5×1015Neq/cm-2  (~250fb-1 in layer 1 at 3cm)  
 
Increase of bias voltage increase the live time 
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Spatial resolution 
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Value in rφ: ~9 µm 
 
• Cluster size in rφ-direction ~ 2 

− Lorentz angle presently about 22º 
− High mobility of electrons 
− “Small-gap” implant geometry 



Development of spatial resolution 
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Perpendicular to the beam axis 
• Lorentz angle is reduced by higher bias voltage 
• Process is slow and steady 
• Well understood and measured since many years  
• No way to prevent this 
• Better focusing of charge onto one channel leads to better 

detection efficiency 
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Spatial resolution parallel to beam axis 
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New detector: 
• Very low η (cluster length: 1): ~150µm× sqrt(12)~40µm 
• “optimum” (cluster length 2): best interpolation possible ~15-20µm 
• Larger η (cluster length >2): Interpolation more difficult.  

Fluctuations in the centre of the cluster  do not contain information. 
• Reach in average ~28µm (overlap studies) 
In irradiated sensor: 
• Shape of cluster has to be taken into account “template algorithm”) 
• If fluence is too high/signal too low: 

– level is low (pitch is smaller than thickness)   
– fluctuations might lead to “hole” in the clusters 
– present software cannot “glue” to clusters together  
– large errors in position determination  

• Smaller pitch makes things worse 
Need  
• lower threshold (digital ROC will reach below 2000e) 
• powerful software tools to “reconnect” broken cluster, which is difficult 

in multi track environment inside jets 



Outlook 

Needs of LHC-experiments are fulfilled by 
sensors presently available: 
• Large areas: p-in-n strips 
• Vertexing: n-in-n pixel 
 
Future projects (e.g. LHC upgrade 2) require  
• “Outer” layers: improved radiation hardness 

at same price level  n-in-p sensors 
• High resistive p-material available 
• Same level of radiation hardness as present pixels 
• Might profit from mixed radiation environment (π/n) in 

the outer tracker regions 
• Pixel layers 

• Level of ~ 5×1015Neq/cm-2 or above achieved with 
present technologies 

• Should consider radiation hardness of read out 
electronics  

• Easily exchangeable “standard” detector might be the 
cheapest solution 

Other candidate technologies 
• 3D sensors 

• Reduce drift distance 
• Proven to deliver high signal at 1016Neq/cm-2  
• Not attractive for small pixel size (dead area, capacitance) 

• Diamond 
• Used in beam monitors at ATLAS, CMS, GSI 
• Polarization effects to be understood 
• Availability of single crystals  
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Linear Colliders 
Here an extremely thin tracker is required 
• Very thin 
• Little power (air cooling) 
One prototype: BELLE II Vertex Detector 
• 2 layers at radii = 1.4, 2.2 cm 
• Based on DEPFET principle 

• Sensor can store charge 
• 1st amplification on sensor 
• Also used for X-ray astronomy 

• monolithic sensor thickness 75μm 
• pixel size ~50 x 50 μm2 

• rolling shutter mode , 100nsec  S/N=17/1 
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Final device 75um thick      X/X0 = 0.18% !! 
(self supporting, no extra mechanics in sensitive region) 
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Silicon sensors are an interesting and active field 
• Requirements to sensors are very different depending on the experiment 
• Up to now all requirements were met 
• Development is ongoing with high speed 
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