2nd CHIPP Workshop on Detector R&D 12, 13 September, 2013

1

ATLAS Upgrades

Giuseppe lacobucci Université de Genève

ATLAS

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

Outstanding LHC performance in 2012 run: 23.3 fb⁻¹ delivered, Peak luminosity routinely over 7.5 10³³cm⁻²s⁻¹

Excellent ATLAS performance, 21.7 fb⁻¹ recorded (~94% efficiency)

□ Main challenge: higher number of pile-up events ($<\mu>~35$)

Motivation for HL-LHC Upgrade

European Strategy for Particle Physics:

https://indico.cern.ch/getFile.py/access?resId=0&materialId=0&confld=217656

- "The discovery of the Higgs boson is the start of a major program of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this program."
- "Europe's top priority should be exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with a view to collecting ten times more data than in the initial design, by around 2030."

Physics prospects with High-Luminosity LHC at ATLAS:

HL-LHC environment is a great challenge. Upgrades are needed

LHC (present) roadmap

HL-LHC Upgrade Challenges

- Upgrades of ATLAS sub-systems are planned to maintain or improve the present performance as the instantaneous luminosity increases.
- The upgrades are devised in three phases, following the LHC upgrade periods, with the goal to optimize the physics reach for each LHC run.

Detector challenges:

□ Expected **peak luminosity** → from 1×10^{34} to $5 \rightarrow 7 \times 10^{34}$ cm⁻²s⁻¹

higher particle fluxes, larger event sizes, higher trigger rate

improved triggers needed

□ Multiple interactions per bunch crossing – "pileup" \rightarrow up to μ =<200>

higher detector occupancy

- readout limitations
- increasing reconstruction complexity
- □ Increasing fluences → up to 10¹⁶n_{eq}/cm² close to beam pipe
 - increased radiation damage
 - increased activation of materials

ATLAS Upgrades

Insertable B-Layer

- Fast TracK trigger
- Muon New Small Wheel
- Calorimeter em trigger
- Trigger and DAQ
- ATLASForwadProton (AFP)

- New inner tracker
- New L0/L1 trigger
- TDAQ
- Calorimeters readouts
- Muon trigger electr.
 (barrel+LW)
- Software & Computing

ATLAS Phase-0 upgrade

Shutdown of 18 months (2013-2014)

Consolidate SC splices for **design energy** ($\sqrt{s} = 14$ TeV) and luminosity (10^{34} cm⁻²s⁻¹). Expect L_{int} = ~75-100 fb⁻¹

ATLAS: prepare for optimal data taking at design luminosity

Detector upgrades:

LHC:

• Insertable Barrel Layer (IBL): pixel 4th layer 🛛 🔶 ATLAS-Switzerland

- New small radius central Beryllium beampipe
- New Service Quarter Panels (**NSQP**): Improved pixel services layout
- Diamond Beam Monitor (**DBM**)
- New chambers in the **muon** spectrometer, to improve geometrical coverage
- New Aluminum beam pipes (to prevent activation and reduce backgrounds)

+ series of **detector consolidation**

ATLAS PIXEL detector upgrade

Need to cure progressive radiation damage and mitigate inefficiencies due to pile-up effects.

Replacement of service distribution panels, to cure malfunctioning channels, increase accessibility and bandwidth.

The ATLAS Insertable B-Layer

through present B-layer

The ATLAS IBL

A new, 4th pixel layer between the innermost
Pixel (B-)layer and the beam pipe
Smaller pixels (50x400 μm → 50x250 μm)
Technology: planar and 3D Si sensors
New readout chip: FE-I4 Pixel Chip in 130nm CMOS

Improves:

- tracking
- vertex resolution
- secondary vertex finding
- b-tagging
- tau reconstruction

at high pileup

Number of pileup interactions

The ATLAS IBL

Didier Ferrere (UniGE) Pixel deputy project leader, in charge of IBL

Construction and tests of staves at UniGE (UniGE + UniBE)

Optical readout (UniBE)

Integration and tests at CERN (CERN, UniBE, UniGE)

September 13, 2013

IBL Stave loading at UNIGE: Status

FE-I4chip (16.8x20 mm²) 336x80 pixels (50μm x 250 μm) 27k channels, 87M transistors

- 10 staves loaded with all components and fully tested
 - perfectly working \rightarrow delivered at CERN
- Need a total of 14
 - will build 18-20

ATLAS Phase-I Upgrade

Shutdown of 14 months (2018-19)

LHC:

ATLAS:

- Consolidation of injector chain; collimators
 - Double the design peak luminosity to 2-3×10³⁴ cm⁻²s⁻¹
 - Expect total of $L_{int} = \sim 300 \text{ fb}^{-1}$ at $\sqrt{s} = 14 \text{ TeV}$ by end 2021
- 1. Continue to require **LVL1 single-lepton** trigger thresholds of $p_T \sim 20$ GeV, even with pileup $\langle \mu \rangle \approx 50-75 \Rightarrow$ preserve **trigger acceptance** of design lumi
- 2. Keep acceptances high and similar between barrel and forward
- 3. Retain sensitivity to BSM physics with as little model dependence as possible

+ ATLAS-Switzerland

Detector upgrade projects:

- New Muon Small Wheels
- New Calorimeter Trigger Tower Builders (higher granularity at the trigger)
- Fast TracKer (FTK): input to LVL2 trigger
- Trigger/DAQ upgrades (various)

One (to be approved) addition

• AFP: Forward Proton detector at ±210m

Components installed in Phase-I must be **compatible with Phase-II** running

ATLAS Phase-I: the FTK

Effective triggering at high luminosity is extremely challenging

- especially for triggers that require track reconstruction
- Fast Track trigger (FTK) a dedicated, hardware-based track finder, an input for L2
 - Finds and fits tracks (~ 25 μs) in the ID silicon layers (incl. IBL) at an "offline precision", for events passing L1
 - Processing performed in two steps
 - 1. hit pattern matching to 10⁹ pre-stored patterns (coarse)
 - 2. subsequent linear fitting in FPGAs (precise)
 - Inspired by the CDF Silicon Vertex Trigger (SVT)

\square Major improvement for **b-tagging**, τ ID, lepton isolation

ATLAS Trigger

- Level-1 (L1): hardware based (~50 kHz)
- Level-2 (L2): software based, full granularity data (~5 kHz)
- Event Filter: software trigger (~500 Hz)

ATLAS Phase-I: the FTK

Geneva contributions

- Production of the AMB-LAMB: boards that house the AMchips and control the data flow through them
- System integration and vertical slice test at the experiment

- Massively parallel pattern recognition using an Associated Memory built in custom ASIC chips (AMchips, 16400 in total)
- Data driven pipelines connected by thousands of high speed serial links at 2Gb/s

ATLAS Phase-I: the Muon NSW

 $1.3 < |\eta| < 2.7$

At Phase-1(2): increase of the cavern background rates

Consequences for the current FWD Muons (Small Wheels)

 Substantial degradation of the tracking performance, both in terms of efficiency and resolution for hit rates corresponding to luminosities greater than the design
 Rate of L1 muon triggers exceeds available bandwidth unless thresholds raised

Replace present Muon SW with New Small Wheels

with improved tracking and trigger capabilities

- Composed of gas chambers of higher precision and robustness, assuring:
 - \Rightarrow position resolution < 100 μ m
 - reduction of fake triggers by using
 IP-pointing segment (σ_θ~ 1 mrad)
 - \rightarrow higher rate capabilities (up to L~5x10³⁴)
- Technology: MicroMegas and sTGCs

ATLAS Phase-I: Calorimeter Trigger

The granularity of the EM L1 trigger will be increased, to exploit shower longitudinal and transverse shapes

- ➡ Better electron-jet separation
- Allow un-prescaled single electron triggers at E_T ~ 25 GeV above L = 10³⁴ cm⁻²s⁻¹
- Together with an update of the central L1 trigger processor, topological L1 triggers will be available.

ATLAS Phase-II Upgrade

ATLAS Phase-II Upgrade

HL-LHC (not yet approved):

- ▶ 18 months shutdown in 2022-23 to prepare for inst. luminosity at 5-7×10³⁴ cm⁻²s⁻¹
- Integrated luminosity 3000 fb⁻¹ after 10 years
- Average pileup: $<\mu> \sim 140-200$ int/bx
- ► Levelling: larger int. lumi & smaller pileup →

ATLAS Phase-II:

- Prepare ATLAS for up to 200 int/bx $(7x10^{34} \text{ cm}^{-2}\text{s}^{-1})$ and up to 3000 fb⁻¹
 - integrated radiation levels, particle densities, trigger.
- Main activity: construction of a new, <u>all silicon</u> tracking detector.
 Collaboration already very active with R&D, prototypes and engineering work.
- Be able to trigger on 20 GeV single muons or electrons (e.g. for Higgs):

Trigger upgrades

- TDAQ upgrade
- Implementation of L1 Track Trigger

Calorimeter upgrades

- New LAr, Tile and HEC readouts
- Possible upgrade of FCal

Muon system upgrades

eveling 10⁻³⁸

th luminosity

- Barrel and Large Wheel trigger electronics
- Possible upgrades of TGCs in Inner Big Wheels

Software & Computing upgrades

ATLAS Phase-II: L1 track trigger

Adding tracking information at Level-1 (L1)

- Move part of High Level Trigger (HLT) reconstruction into L1
- □ Goal: keep lepton-p_T trigger thresholds and L1 trigger rates low
- Options considered:
 - Region of Interest (Rol) based approach with L0 seeding necessary
 - Standalone approach (subset of layers, layout important)
- Challenge: squeeze into existing latency

ATLAS Rol Trigger:

Improve calo and muon trigger granularities (already in Phase-I)

- New Level-0 trigger within 5µs uses calo and muon systems to reduce the rate from 40 MHz to ~ 500kHz and define Rols
- ➡ Level-1 extracts tracking for just Rols from detector front-ends

ATLAS Phase-II: Muon Spectrometer

ATLAS Phase-II: the new tracker

- Current Inner Detector (ID) designed to operate for 10 years at $L=1\times10^{34}$ cm⁻²s⁻¹ with <µ>=23, L1=100kHz
- □ Limiting factors at HL-LHC
 - Bandwidth saturation in Pixels and SCT
 - Increased occupancies in TRT and SCT
 - □ Radiation damage for Pixels (SCT) designed for 400 (700) fb⁻¹

ATLAS Phase-II Upgrade: ITk Performance Studies

ATLAS Phase-II: the new tracker

Baseline layout design:

- Pixel size 25/50×150 μm² (now 50×400/250 μm²)
 - better two-track separation for boosted bottom quark jets
- Less material, thinner sensors (<150 μm)
 - improved pt resolution
- Pseudorapidity range up to $\eta = 2.7$
 - to match muon acceptance

• ATLAS-Switzerland: important involvement in ITk

(as it was for the present tracker). Under discussion:

- Strips (UniGe proponent of one of the 2 designs)
- Pixels
- R&D on HV-CMOS started
- Baseline layout used for detailed perf. & physics studies at HL-LHC
 - Not frozen in stone, neither layout nor technology
 - e.g.: physics case for extending the ITk in the forward direction?

ATLAS Phase-II tracker: Layout Variants

Alternative layouts being considered which include either a further pixel layer or inclined pixel sensor possibly attached to the same barrels

Alpine pixels

- Uses the same stave for barrel and endcap modules
- No barrel-endcap transition region
 Less services material
- Simplified mechanical support
- Large reduction in sensor area

Alpine pixel layout

Conical pixels

- Uses bent staves on outer barrel pixels
- Improves hermeticity and material in transition region

Very Forward pixels

 \square Extends tracking to $|\eta| \sim 4$

Summary

ATLAS collaboration has devised a detailed 3-phase program to reflect the changes in the LHC conditions towards the HL-LHC, characterized by high track multiplicity and extreme fluences, with intention to:

maintain/improve the present detector performance, ensuring optimal physics acceptance as the instantaneous luminosity increases

The foreseen, major ATLAS upgrades include:

Phase-0 (2013/2014 LHC shutdown)

□ Installation of a new, 4th pixel layer (IBL)

Phase-1 (2016/2017 LHC shutdown)

Installation of a New Muon Small Wheels

Fast Track Trigger

□ Phase-2 or HL-LHC (2022/23 LHC shutdown):

- Inner Detector challenged by high radiation & occupancy
- Build completely new all-silicon ID (pixel and strips)
- Introducing L1 Track Trigger

Prepare the detector for HL-LHC and 10 more years

Higgs Prospects at the HL-LHC

ATLAS Simulation

Higgs precision measurements

- Expected uncertainties on signal strength reduced by a factor of 2-3 with HL-LHC
- Ratio of partial widths to measure ratios of couplings and probe new physics at 5-15% level
- Higgs self-coupling in SM becomes accessible only at HL-LHC luminosity

- Self-interaction is a fundamental property of the SM Higgs
- Higgs pair production includes destructive interference bw the two diagrams
- ATLAS HH \rightarrow bbyy yields ~2 σ significance with 3000 fb-1 (preliminary)
- Combining with HH \rightarrow bb $\tau\tau$, + CMS, it is believed that it is possible to reach a 30% or 40% precision on λ

Rare Higgs processes at HL-LHC

$\Box H \rightarrow \mu \mu$

- \Box ATLAS expect >6 σ significance with 3000 fb⁻¹
- ttH allows precise measurement of top-Yukawa coupling
 - $\Box \quad \text{ttH, H} \rightarrow \gamma \gamma$
 - □ >100 signal events @ 3000 fb⁻¹
 - □ S/B ~20%
 - \Box ttH, H $\rightarrow \mu\mu$

Only ~30 signal events but S/B~1 with 3000 fb⁻¹

IBL

2 different sensor technologies:

double chip (DC) modules with 2 FE-I4 and 1 planar n-in-n sensor tile
 single chip (SC) modules with 1 FE-I4 and 1 n-in-p 3D sensor tile

Planar sensor	3D sensors	
200 µm thickness	230 μm thickness	
inactive edge <250 μm (minimize gaps in η , no overlap)	inactive edge 200 μm low depletion voltage (<180V) even after high doses	
low Q generated after irradiation \rightarrow low threshold operation and high HV		
cheaper and easier to fabricate	electrode orientation suitable for highly inclined tracks	

FE-I4chip (16.8x20 mm²) 336x80 pixels (50μm x 250 μm)

75% planar, 25% 3D sensors (@ large η)⁷²⁴

New Service Quarter Panels

- nSQP will replace current Pixel services
- opto-boards on the panels will be replaced with e-boards connected to new opto-boards outside the Pixel detector volume (easier access for optical link replacement)
- Also: repair of Pixel RO channels, redundant links, faster
- Diamond Beam Monitor attached to nSQP
 - uses diamond detectors produced for IBL trials
 - will provide very fast monitoring of beam in high rate environment

Endcap Extension (EE) Muon Chambers

New Muon Small Wheels (NSW)

- Precision chambers combine small-strip TGCs and MicroMegas technologies. for robustness to Phase-II luminosities
- **sTGC** (small-strip Thin Gap Chambers): reduced cathode resistivity of $100k\Omega$ /square
 - \rightarrow rate capability has been increased substantially up to 30kHz/cm2
- MicroMegas (MM)
- -MM consists of a planar drift electrode, a gas gap of a few mm thickness, acting as ionization and drift region, and a thin metallic mesh at ~100 μ m distance from the read-out electrode, creating the gas amplification region

September 13, 2013

ATLAS Forward Proton (AFP)

Diffractive Physics

- ATLAS Forward Proton (AFP) detectors
 - Tag and measure scattered protons at ± 210m
- Hardware
 - Radiation-hard edgeless 3D silicon developed in IBL context
 - datactor for accordiation with h 10ps timing Cerent igh pT primary vertex n loss ξ $0.02 < \xi < 0.2$ 300<√(ξ1ξ2s)<1200 (GeV)
 - Probe hard diffractive phy heavy particles

ikov detector for (associ	ation with high p
	Acceptance	Tagged proton momentum loss ξ Typical di-photon mass acceptance
ctive physics and		Spatial Resolution

Angular Resolution

 $\sim 15 \,\mu m$

 $\sim 1 \mu rad$

Calorimeter Upgrades

- EM and Hadronic Calorimeters require no upgrade
- □ full upgrade of FE and BE electronics for both Lar EM and Tile Hadronic:
- radiation effects and expected flux will deteriorate their performance
 Hadronic EndCap calorimeter cold electronics designed for 1000 fb⁻¹
 - \Box assuming safety factors \rightarrow possible replacement
- □ Current Forward Calorimeter (3.2< $|\eta|$ < 4.9) not designed for L>10³⁴ cm⁻²s⁻¹ when space charge effects cause significant signal deterioration

Option 0 detector unchanged

Option I complete replacement of FCAL smaller LAr gaps (to reduce ion build up /HV drop) + better cooling (to avoid overheating)

Option 2 installation small calorimeter in front of current Fcal: Mini-Fcal \rightarrow reduce energy and ionization @ ECal

ightarrow reduce energy and ionization @ FCal

