CMS Upgrade R & D

CHIPP Workshop on Detector R & D

Ben Kilminster

Uni. Zürich on behalf of CMS Switzerland

- See other talks in this workshop
 - Tilman Rohe, PSI: "Silicon tracking detectors"
 - Guiseppe lacobucci, Genève : "ATLAS Upgrade"
 - European strategy for High Energy colliders
 - LHC roadmap and design parameters
 - LHC High Luminosity operation (LHC-HL)
- Borrowed heavily from
 - R. Horisberger, PSI : "Technical Design Report of the Upgrade of CMS Pixel Detector", LHCC upgrade review Sept. 2012
 - R. Wallny, ETH : "Swiss contributions to CMS Upgrades", CHIPP meeting, June 2013
 - F. Nessi-Tedaldi, ETH : ECAL upgrade work

R&D summed up in one picture

R&D summed up in one picture

470 charged hadrons $P_T > 0.1$ GeV per unit $|\eta|$ at 8 TeV More at 13 TeV ! 78 reconstructed vertices Real data from special run Expect 50 – 100 pile up by 2018 100 – 200 pile up by 2022

Challenges

Swiss focus

R & D efforts focused on high-occupancy interior of detector Electromagnetic calorimeter **Detector** material Precision inner tracking 100000

Swiss focus

Spatial constraints of existing detector present added difficulties ECAL : Current space allocation based on PbWO crystals : All other materials bigger ! Tracking : Additional tracking layers must fit in existing volume Material : Require more cables, cooling

Improvements sought

Goals of upgrades ECAL : Reduced damage from hadrons **Compact sampling calorimeter Tracking**: Improved light yield from WLS Additional tracking layer Higher data bandwidth Reduced hit energy threshold Radiation harder Material: Lighter cooling tubes Lighter mechanical structure Lighter coolant Maintain current cable material

Physics gain of improvements

CMS Construction: CH Contributions

Phase I Upgrades < 2018

Silicon Pixel barrel (PSI, ETHZ, UZH)

Limitations of Current Pixel System

0.92

0

500

1000

1500

bunch train

2000

- Impact parameter resolution limited by material in forward region
- Track efficiency drops with Inst. Lumi
 - Layer 1 hit inefficiency
 - LHC design 1x10³⁴ @ 25 ns : 4%
 - LHC at 2x10³⁴ @ 50ns : 50%
 - Several bottlenecks
 - Buffer Space in ROC
 - Optical readout of modules
 - FED to event builder

h277

3000

1.11313e+07

3500

bunch

Entries

2500

System parameters : Current & Upgrade

Parameter of Pixel System	<u>Present</u>	<u>Upgrade</u>
# layers (tracking points)	3	4
Beam pipe radius (outer)	29.8 mm	22.5 mm (LS1)
Innermost layer radius	44 mm	29.5 mm
Outermost layer radius	102 mm	160 mm
Pixel size (r-phi x z)	100µ × 150µ	100μ × 150μ
In-time pixel threshold	3400 e	1800 e
Pixel resolution (r-phi x z)	13μ x 25μ	13μ x 25μ <mark>(or better)</mark>
Cooling	C ₆ F ₁₄ (monophase)	CO ₂ (biphase)
Material budget X/X ₀ (η=0)	6%	5.5%
Material budget X/X ₀ (η=1.6)	40%	20%
Pixel data readout speed	40MHz (analog coded)	400Mb/sec (digital)
1 st layer module link rate (100%)	13 M pixel/sec	52 M pixel/sec
Readout chip pixel rate cabability	~120 MHz/cm ²	~580 MHz/cm ² 16
control & ROC programming	TTC & 40MHz I ² C	TTC & 40MHz I ² C

Readout Modifications (1): ROC

- Readout Chip (ROC) function :
 - Stores and outputs hit information for pixels exceeding set threshold within time window
 - Address, pulse height, time stamp stored
- Specifications ROC PSI46dig: Mitigation of
- Increased luminosity by LHC machine ~2x10³⁴
- Higher pixel rates due to reduced Layer 1 radius (r_{L1} = 30 mm)
- Higher data output rate capability due to 50ns (?) LHC operations
- Reduced sensor signals due to irradiation (L1 sensor ~250 fb⁻¹)
- ROC changes:
- Increase DC time-stamp- / data-buffers (12 / 32 \rightarrow 24 / 80)
- ROC internal token passage & double buffered (64) readout
- 160 Mbit/sec digital readout for pixel addr. & pulse heights
- ROC level 8-bit ADC for pixel pulse height digitization
- Reduced pixel in-time threshold of <1600e (present 3400e)
- Increase data transmission rate (factor x 4)

Recticle of Jan 2013 Engineering Run

ROC version	Rate [MHz/cm2]
PSI46 (ana)	~100
PSI46dig	~200
PSI46dig+ (L1)	~500

ROC : Readout Chip TBM : Token Bit Manager POH : Pixel Optohybrid FED : Front End Driver

Changes to pixel data readout link:

- TBM combines 2 serial ROC 160Mb/s data streams to 4b/5b encoded 400Mb/s.
- 400Mb/s / fiber → 2x present pixel readout rate
- Number of fibers per module:
 - BPIX: 1 for L4, 2 for L2 & L3, 4 for L1 !
 - FPIX: 1 for inner ring, ½ for outer ring.

Tracking efficiency for tt sample with ROC data losses. \rightarrow pions etc. (hadronic interactions)

Results in significant gain in signal reconstruction efficiency for multi-lepton final states:

$$\begin{array}{ll} H \rightarrow ZZ \rightarrow 4\mu & + 41\% \\ H \rightarrow ZZ \rightarrow 4e & + 51\% \end{array}$$

Transverse impact parameter resolution with 50PU

Gains in longitudinal impact parameter resolution even more pronounced !

e.g. $\eta < 1$, p=100GeV \rightarrow gain = 1.63 ! (transversal impact parameter gain =1.15)

Improved B-tagging and Vertexing

Upgrade Pixel @ $<\mu>=50$ \Leftrightarrow Current Pixel @ $<\mu>=0$ \rightarrow maintain physics capability or better at large PU

Swiss CMS Detector R&D

SUSY particle searches with $\gamma\gamma + E_T^{miss}$

- SUSY searches with $\gamma\gamma$ + E_t^{miss} background : mis-identification of electrons and photons
- Fake rate of electrons being identified as photons depends crucially on pixel detector
- MC study of fake rate with Z^0 decays into e^+e^-

Module Testing and Construction

- CH-consortium builds L1 and L2 modules (33%)
 - Provide Test Board for whole collaboration
- Extensive testing (now) :
 - Irradiations
 - Test beam campaigns
 - Electrical tests under controlled environment
 - High-rate X-ray tests

Sept 13 2013

Swiss CMS Detector R&D

Material budget

From simulation of radiation lengths

Supply Tube

CO₂ Cooling Loop Engineering Model

CO₂ Cooling Loop Engineering Model

CO₂ Cooling Loop Engineering Model

Phase II Upgrades 2022

ECAL (ETHZ)

- Cumulative loss of signal expected, due to hadron damage to crystals and aging of photo sensors
 - Studies pioneered by ETHZ NIM A 545 (2005) 67, NIM A 564 (2006) 164, NIM A 622 (2008) 266, NIM A 684 (2012) 57
 - Radiation longevity of present electronics is currently being studied
- A data-validated aging model is implemented in CMS full simulation
 - Tuning of reconstruction and study of physics performance degradation (including pile-up effects)
 - => replace endcaps after 500 fb⁻¹ to keep ECAL coverage to η <2.6

ECAL Phase II Upgrade Strategy

ECAL upgrade "working hypothesis" (approved by ECAL Steering Committee and ECAL Institution Board):

- Complete replacement of the ECAL endcaps (EE) and preshower detectors
- Replacement of the ECAL barrel (EB) Front end Electronics
- Cooling of EB to 8 °C (now 18 °C) to control noise

ECAL endcaps

- Full recovery of radiation damage with heating, bleaching not possible
- EE partial crystal replacement not feasible
- Allows extended η-coverage
- Allows higher granularity (less pile-up)
- Allows for ECAL/HCAL combined approach

ECAL barrel

- Adapt 20 μs latency and 1 MHz L1A trigger rates
- Mitigate ECAL spike problem and its impact on ECAL triggers
- Solves partially electronics wear out problem
- limit the leakage current in the APDs

Electronics replacement is driven by the trigger rate and latency requirements.

ECAL Phase II Upgrade R&D

"Strawman" layout:

- Sampling calorimeter
- Absorber: Pb or W
- Scintillator: crystalline or sintered, inorganic
- Readout: direct or via WLS
- Main issue: radiation hardness of all components

- LYSO, YSO, CeF₃, sintered scintillators, photo-detectors
- Proof-of-principle readout tests

Proof-of-principle

Swiss Involvement in CMS Upgrades

25 June 2013

ECAL Electronics

ECAL Trigger	EB status	Phase 2 requirements
L1A rate	abs. max. (120-150) kHz	(500 to 1000) kHz
L1A latency	6.4 μs (fixed)	(10 to 20) µs
ECAL 'spikes'	False triggers	mitigate

ECAL 'spikes': signals from direct interactions in the APDs, causing false triggers)

ECAL end-caps (EE): rebuilding EE completely requires new electronics

Additional question: longevity of the electronics – this is presently studied

Possible ETH contributions (in line with our past contributions)

- Participation in the system design
- Participation in the required ASICs development
- Participation in prototyping, fabrication and testing of Front-End electronics
- Adaptation and remake of the DCS components (as necessary)
- Electronics installation and testing in the electronics integration center

Phase II Upgrades 2022

Inner tracker (PSI, ETHZ, UZH) Diamond R&D (ETHZ)

Tracker Longevity

- Outer strip tracker longevity strongly depends on cooling performance
 - may loose good fraction of inner modules without cooling by 500 fb⁻¹ (thermal runaway)
 - 4th pixel layer may partially compensate cooling induced strip tracker losses
- Proposal to replace Tracker during LS3

- Current **pixel sensor** radiation budget (inner layer L1) is 250 fb⁻¹ = 1.5 x 10¹⁵ n_{eq}/cm² @29.5mm
 - Pixel detector mechanical envelope expected to stay the same
 - Pixel can be accessed during any year-end technical stop / L1 exchange possible
 - L2 radiation dose is 4x less
- Explore alternative sensor material for L1:
 - Planar / 3D / Diamond (including 3D diamond)

Diamond R&D

- Diamond sensors can be operated @300 ⁰K
 - − Excellent thermal conductor
 → heat removal
- Low leakage current
 - good signal/noise ratio even at high radiation dose ~10¹⁵ p/cm²
- Planar strip, pad, pixel and 3D structures tested
- Diamond projects:
 - ATLAS & CMS Beam Conditions Monitor

500µm

- CMS Pixel Luminosity Telescope (?)
- ATLAS Diamond Beam Monitor

Planar

Diamond R&D

- Diamond sensors can be operated @300 ⁰K
 - − Excellent thermal conductor
 → heat removal
- Low leakage current
 - good signal/noise ratio even at high radiation dose ~10¹⁵ p/cm²
- Planar strip, pad, pixel and 3D structures tested
- Diamond projects:
 - ATLAS & CMS Beam Conditions Monitor

500µm

- CMS Pixel Luminosity Telescope
- ATLAS Diamond Beam Monitor

Conclusions

• High inst. and integ. Luminosity present challenges for maintaining CMS physics

- Swiss upgrade efforts focus on improving :
 - Inner tracking
 - Material budget ie, cooling & supply
 - Electromagnetic calorimeter
- Phase 1 barrel pixel upgrade
 - Production readout chips being tested
 - CO₂ cooling plant and prototype cooling system almost ready for testing
 - Many electronics components prototyped
- Phase II upgrades being defined
 - Electromagnetic Calorimeter
 - ECAL end cap replacement
 - ECAL electronics upgrade
 - Tracking
 - Tracker replacement (including pixel)
 - Possible use of diamonds
 - Possible extension of tracking and calorimetry up to $|\eta| \le 4$?
- CMS-CH intends to continue its vital role in CMS ECAL and Pixel

Backup

LHC Timeline

Upgrade Motivation

- **CMS Design:** 10 years of $\mathcal{L}=10^{34}$ cm⁻²s⁻¹ (25 ns) with mean pile up < μ >~25 for $\int \mathcal{L} dt \leq 500 \text{ fb}^{-1}$
- LHC is expected to outperform its design specs after LS1 •
 - 2010-2013: $\mathcal{L} \simeq 80\%$ of design, exceeding nominal pile-up at 50ns
- Phase I (2010-2020) Upgrades: Consolidation and ٠ Performance improvements
 - Complete the phase 1 detector
 - Mitigation of beyond baseline performance of the LHC (data rate)
 - improvements for post LS2 operation at $\mathcal{L} \leq 2...2.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ (25ns) with $\langle \mu \rangle \sim 70$
- **Phase II (2022-) Upgrades:** Precision Physics and Radiation Damage Mitigation •
 - Higgs sector survey, BSM searches, SM precision physics
 - Keep low trigger threshold, accept high rate
 - Deliver Phase I detector performance in much harsher environment
 - Replace detector components at end of their lifetime

25 Mean number of interactions per crossing

qd 40

Recorded Luminosity

10 19 20

CMS Upgrades

Pixel Phase I Upgrade

"Evolutionary" upgrade with minimal disruption of data taking:

Robust vertexing in large PU $<\mu>\sim50$ (25ns) ٠ \rightarrow increase 3 layers to 4 layers (1.6 x present detector) \rightarrow improved track seeding

Radius Faces Modules 30 mm 12 96 CH 28 224 CH 68 mm 109 mm 44 352 CERN/TW, I/SF 160 mm 64 512 D

- Shift material to high η , CO₂ cooling \rightarrow improved impact par. resolution ٠ + Fwd Disks USA \rightarrow reduced γ conversion
- Modify ROC for $\mathcal{L}=2x10^{34}$ cm⁻²s⁻¹ operation \rightarrow reduce data loss at r₁₁=29.5mm •

 \rightarrow decrease threshold ~x 2!

- Expected lifetime 500 fb⁻¹ (L1 2 x 250 fb⁻¹)
- Swiss Consortium (ETHZ, PSI, UZH): ROC design, supply tube & mechanics, CO₂ cooling, •

2x L1 & L2 module production and testing

Phase II Physics Program

- Precision survey of Higgs sector
 - Properties
 - − Study rare decays (eg H \rightarrow µµ @ 5σ)
 - Study (self-) couplings (ie. HH \rightarrow bbyy)
 - Study VV scattering
- Precision SM physics
 - Top Factory
 - EWK precision studies, ...
- Search for new physics in very rare processes
 - Characterize any New Physics discovered during Phase 1 @ 14 TeV

"CMS at the High-Energy-Frontier", Input to the Update of the European Strategy for Particle Physics, CMS-Note 2012/006

		Uncertainty (%)		
Coupling	300 fb^{-1}		3000 fb^{-1}	
	Scenario 1	Scenario 2	Scenario 1	Scenario 2
κ_{γ}	6.5	5.1	5.4	1.5
κ_V	5.7	2.7	4.5	1.0
κ_g	11	5.7	7.5	2.7
κ_b	15	6.9	11	2.7
κ_t	14	8.7	8.0	3.9
$\kappa_{ au}$	8.5	5.1	5.4	2.0

Scenario 1: systematics as in 2012 Scenario 2: theory syst. scaled by a factor $\frac{1}{2}$, other systematics scaled by $1/\sqrt{L}$

"Europe's top priority should be the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with a view to collecting ten times more data than in the initial design, by around 2030. (...) " Whitepaper "Update of the European Strategy for Particle Physics"

System Parameters: Present and Upgrade

Parameter of Pixel System

layers (tracking points) beam pipe radius (outer) innermost layer radius outermost layer radius pixel size (r-phi x z) In-time pixel threshold pixel resolution (r-phi x z) cooling material budget X/X_0 ($\eta=0$) material budget X/X₀ (η =1.6) pixel data readout speed 1st layer module link rate (100%) ROC pixel rate cabability control & ROC programming Sept 13 2013

Present 3 29.8 mm 44 mm 102 mm 100u x 150u 3400 e 13µ x 25µ C_6F_{14} (monophase) 6% 40% 40MHz (analog coded) 13 M pixel/sec ~120 MHz/cm² TTC & 40MHz I²C Swiss CMS Detector R&D

<u>Upgrade</u>

4 22.5 mm (LS1) 29.5 mm 160 mm 100µ x 150µ 1800 e 13µ x 25µ (or better) CO_2 (biphase) 5.5% 20% 400Mb/sec (digital) 52 M pixel/sec ~580 MHz/cm² TTC & 40MHz I²C

CO₂ cooling plant

- Two CO₂ systems will be installed, one for FPIX and one for BPIX (15KW each)
- Different temperatures possible for FPIX and BPIX
- *Redundancy*: BPIX and FPIX can both be run on either one of the two cooling plants
- Copper pipes pressure certified (+20°C, 70bar)
- Operating temperature range -20°C (operations) to +15°C (commissioning)
- System cooling tests with engineering copies of BPIX & FPIX cooling loops & heat loads.
- Installation in LS1

Redundant BPIX/PFIX CO₂ cooling circuits

<u>3D CAD of cooling plant</u>

CAD Manifold

20

Working assumptions for the LHC Luminosity Upgrades

Note: LS2 and LS3 dates will very likely change. When will quads have to be replaced? what Will be the integrated luminosity before LS3 ? ...

- Cumulative loss of signal expected, due to hadron damage to crystals and ageing of photosensors
 - Studies pioneered by ETHZ NIM A 545 (2005) 67, NIM A 564 (2006) 164, NIM A 622 (2008) 266, NIM A 684 (2012) 57
- Replacement of end caps needed when 10% of light remains

=> replace end caps after 500 fb⁻¹ to keep ECAL coverage to η<2.6</p>

ECAL Electronics

ECAL Trigger	EB status	Phase 2 requirements
L1A rate	abs. max. (120-150) kHz	(500 to 1000) kHz
L1A latency	6.4 μs (fixed)	(10 to 20) µs
ECAL 'spikes'	False triggers	mitigate

ECAL 'spikes': signals from direct interactions in the APDs, causing false triggers)

ECAL end-caps (EE): rebuilding EE completely requires new electronics

Additional question: longevity of the electronics – this is presently studied

Possible ETH contributions (inline with our past contributions)

- Participation in the system design
- Participation in the required ASICs development
- Participation in prototyping, fabrication and testing of Front-End electronics
- Adaptation and remake of the DCS components (as necessary)
- Electronics installation and testing in the electronics integration center

CMS Construction: CH Contributions

Important management roles since the 1990s

Pixel upgrade 2017

