

Search for the rare decay $\mu^+ \to e^+ e^- e^+$

2nd CHIPP Workshop on Detector R&D

Roman Gredig

Outline

Introduction

Detector

Optical Simulation

Test Setup

Fibre Ribbon

Time Schedule

Lepton Flavor Violating Decay

Search for the lepton flavor violating decay $\mu^+ \to e^+ e^- e^+$

- Lepton flavor not conserved
- we know it from neutrino oscillation
- but the charged leptons?

Design Parameters

- aimed sensitivity: $\mathcal{B}(\mu \rightarrow eee) < 10^{-16}$ (first phase: 10^{-15}) (current limit: $\mathcal{B}(\mu \rightarrow eee) < 10^{-12}$, SINDRUM 1988)
- stopped muons per second: $2 \cdot 10^9$ (first phase: $2 \cdot 10^8$)
- main background: $\mu \rightarrow eee\nu_e\nu_\mu$, with $\mathcal{B} = 3.4 \cdot 10^{-5}$ and accidentals
- electron energies 0 53 MeV

We need:

- high vertex and time resolution: $\mathcal{O}(100\,\mu m)$, $\mathcal{O}(several 100\,ps)$: combinatorial background
- precise measurement of momentum (\ll 1 MeV):
 - $\mu \rightarrow \textit{eee}\nu_{\textit{e}}\nu_{\mu}$ background
- thin detectors (< 50 μm): multiple scattering

- homogeneous magnetic field (\sim 1 T)
- Al double cone to stop the muons
- Si pixel tracker
- Scintillating Fibres
- Scintillation Tiles

- homogeneous magnetic field (\sim 1 T)
- Al double cone to stop the muons
- Si pixel tracker
- Scintillating Fibres
- Scintillation Tiles

- homogeneous magnetic field (\sim 1 T)
- Al double cone to stop the muons
- Si pixel tracker
- Scintillating Fibres
- Scintillation Tiles

- homogeneous magnetic field (\sim 1 T)
- Al double cone to stop the muons
- Si pixel tracker
- Scintillating Fibres
- Scintillation Tiles

- homogeneous magnetic field (\sim 1 T)
- Al double cone to stop the muons
- Si pixel tracker
- Scintillating Fibres
- Scintillation Tiles

Silicon Pixel Detector

- $< 50\,\mu m$ thickness
- active sensors
- low noise, low power consumption
- $\, 80 \times 80 \, \mu m^2$ pixel size
- time resolution: \sim 20 ns \Rightarrow better timing needed
- see also Ivan Perić's presentation yesterday

Scintillating Fibres Swiss Contribution

How to reach better time resolution:

- scintillating double cladding fibres
- three to five layers
- used as detectors and light guides
- readout at fibre end with silicon photomultipliers (SiPM):
 ⇒ either each fibre individually or column by column
- fibre length: 36 cm
- fibre diameter: 250 μm
- \approx 4500 Fibres

center module front view

Optical Simulation

Zürich Contribution

Simulation of:

- scintillating process
- light propagation
- SiPM detection at both ends of fibres
- a lot of configurations possible:
 - fibre shape
 - roughness
 - coating (e.g. TiO)
 - stacking

Optical Simulation

Photon Yield

Optical Simulation Simulation of the SiPM Response

- photon flux at fibre end used to simulate SiPM signal
- gives first estimation of time resolution
- SiPM response "GosSiP" [1]
- time resolution of about 400 ps possible (fwhm @ constant fraction discriminator)

[1] P. Eckert et al., JINST 7 (2012) P08011

Test Setup Fibre Readout

Mart

Test Setup Fibre Coupling to PMT

- holder of the fibre end
- diamond milling of the holder with the fibre after clamping ⇒ smooth surface
- still some problems to be solved

Mart

Test Setup Fibre Coupling to PMT

Fibre Ribbon

how to stack the fibres?

- feasibility (mechanical)
- minimizing dead material
- simplify readout
- single fibre vs. column by column readout
- simulation of different scenarios
- example: crossing with mean angle ($\sim 20^{\circ}$)

Fibre Ribbon

how to stack the fibres?

- feasibility (mechanical)
- minimizing dead material
- simplify readout
- single fibre vs. column by column readout
- simulation of different scenarios
- example: crossing with mean angle ($\sim 20^{\circ}$)

fibre crossing angle

Fibre Ribbon

how to stack the fibres?

- feasibility (mechanical)
- minimizing dead material
- simplify readout
- single fibre vs. column by column readout
- simulation of different scenarios
- example: crossing with mean angle ($\sim 20^{\circ}$)

2013/09/13 R. Gredig

Fibre Ribbon

how to stack the fibres?

- feasibility (mechanical)
- minimizing dead material
- simplify readout
- single fibre vs. column by column readout
- simulation of different scenarios
- example: crossing with mean angle ($\sim 20^{\circ}$)

Mag

Fibre Ribbon

how to stack the fibres?

- feasibility (mechanical)
- minimizing dead material
- simplify readout
- single fibre vs. column by column readout
- simulation of different scenarios
- example: crossing with mean angle ($\sim 20^{\circ}$)

2013/09/13 R. Gredig

M3 C

Fibre Ribbon

how to stack the fibres?

- feasibility (mechanical)
- minimizing dead material
- simplify readout
- single fibre vs. column by column readout
- simulation of different scenarios
- example: crossing with mean angle (\sim 20°)

most probable value

Coupling to the SiPM

single fibre vs. column by column readout

- 64 channel monolithic device à la LHCb
- 250 μm "pitch", 50 μm pixels
- common bias voltage

- monolithic device with 6 x 32 independent sensors
- 0.4 \times 0.4 mm 2 with 100 μm pixels and 100 μm spacing
- (bias voltage regulated for each sensor $\Delta U \sim 0.5 \text{ V}$)

Ribbon Performance

UniGE: β source crossing the ribbon

Swiss Responsibilities

component	who
beam	PSI
target	PSI (+ Heidelberg)
SciFi tracker	UniGE, UZH, ETHZ, PSI
timing electronics	PSI, UniGE, UZH, ETHZ
slow control	PSI
infrastructure	PSI

Time Schedule

Letter of IntentJanuary 2012Research ProposalJanuary 2013Technical ReviewJanuary 2014Stage I2015 – 2017Stage II2018+

The Mu3e Collaboration

- DPNC, University of Geneva
- Physics Institute, Heidelberg University
- KIP, Heidelberg University
- ZITI Mannheim, Heidelberg University
- Paul Scherrer Institute (PSI)
- Physik-Institut, University of Zurich
- Institute for Particle Physics, ETH Zurich