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The evolution of the muon spin Sµ(t)
The Larmor equation

Basic principle of mechanics:
Time derivative of angular momentum is equal to the sum of the torques:

d~Sµ(t)

dt = mµ(t)× Bloc(t). (1)

Since
mµ = γµ~Sµ, (2)

by definition of the gyromagnetic ratio, we have

dSµ(t)

dt = γµ Sµ(t)× Bloc(t). (3)

γµ = 851.6 Mrad s−1 T−1.



Consequences and solution of the Larmor equation
From dSµ(t)

dt = γµ Sµ(t)× Bloc(t) we deduce:

I dSµ(t)
dt · Sµ(t) = 0:

Sµ(t) is a constant of the motion, i.e. Sµ(t) = Sµ(0)

I dSµ(t)
dt · Bloc(t) = 0:

this implies dSµ(t)
dt is perpendicular to Bloc(t).

Assuming Bloc(t) = Bloc,

Sµ(t) = S‖µ(0) u + S⊥µ (0)[cos(ωµt) v− sin(ωµt) w], (4)

with ωµ = γµBloc.

The precession frequency only depends on Bloc, not on the
angle between Sµ and Bloc !
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The transverse and longitudinal polarization functions
Definition

I Sµ: initial muon beam polarization.
I Pα(t): a polarization function, i.e. the evolution of the projection of

the muon ensemble polarization along axis α.

Our convention for the axes.
Bext is always parallel to Z.

I in transverse field experiment: Sµ ‖ X→ PX (t) or PY (t).
I in zero-field and longitudinal field experiment: Sµ ‖ Z→ PZ (t).



Transverse field experiment

Per definition, Sµ ≡ Sµ(t = 0) ‖ X.
From the solution of the Larmor equation,

SX
µ (t) = Sµ[cos2 θ + sin2 θ cos(ωµt)]. (5)

Let Dv (Bloc) be the distribution of static fields probed by the muons,

Pstat
X (t) =

〈
SX
µ (t)

Sµ

〉
=

∫
[cos2 θ + sin2 θ cos(ωµt)]Dv (Bloc) d3Bloc. (6)

Example:
if all the muons are submitted to Bloc = B0 ‖ Z, i.e. θ = π/2,

Pstat
X (t) = cos(ω0t) (7)

with ω0 = γµB0.



Zero or longitudinal field experiment

Per definition, Sµ ≡ Sµ(t = 0) ‖ Z.
From the solution of the Larmor equation,

SZ
µ (t) = Sµ[cos2 θ + sin2 θ cos(ωµt)]. (8)

Let Dv (Bloc) be the distribution of static fields probed by the muons,

Pstat
Z (t) =

〈
SZ
µ (t)

Sµ

〉
=

∫
[cos2 θ + sin2 θ cos(ωµt)]Dv (Bloc) d3Bloc. (9)

For isotropic Gaussian distributed Bαloc with rms ∆G,

Pstat
Z (t) = PKT(t) =

1
3 +

2
3 (1−γ2

µ∆2
Gt2) exp

(
−
γ2
µ∆2

Gt2

2

)
,

(10)
which is the so-called Kubo-Toyabe function.



Outline
The muon spin evolution in a static field

A reminder about the Larmor equation
Basic examples for the two µSR geometries

The muon spin evolution in a dynamical field
Stochastic approach: the weak and strong collision models
Quantum approach
Spin correlation functions
Dynamical range of µSR

A flavor of dynamical phenomena probed by µSR
Phase transitions, magnetic fluctuations and excitations
Spin glasses
Complementarity with other techniques
Superconductors
Diffusion of Li+

Summary



Introduction to the dynamical polarization functions (1)

The Larmor equation

dSµ(t)

dt = γµ Sµ(t)× Bloc(t), (3)

is still valid.
However it is difficult to solve it when Bloc(t) is a stochastic variable.
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Introduction to the dynamical polarization functions (2)
Stochastic account of dynamics

We compute Pα(t) for two different models.

Hypothesis for both models:
Bloc(t) follows a stationary Gaussian-Markovian process, i.e.

I independent of origin of time
I Bα

loc(t) belongs to a Gaussian distribution
I Bloc(t) evolves in jumps, with a hopping probability which does not

depend on the system state before the jump.
Doob’s theorem (1942):

〈Bα
loc(t0)Bα

loc(t0 + t)〉 = 〈(Bα
loc)2〉 exp (−νc|t|) (11)

where ν−1
c = τc is the field correlation time.



Dynamical polarization functions
Computation of PX (t) in an external field Bext: the weak collision model (1)

Recall, for a single static field B0,

Pstat
X (t) = cos(ω0t) (7)

with ω0 = γµB0.
For BZ

loc(t), the phase at time t is

γµBZ
loc (t0) (t1 − t0) + ...+ γµBZ

loc (tn−1) (tn − tn−1) =

∫ t

0
γµBZ

loc(t ′)dt ′.
(12)

After averaging over the muon ensemble

PX (t) = Re
{〈

exp
[
i
∫ t

0
γµBZ

loc(t ′)dt ′
]〉}

. (13)



Dynamical polarization functions
Computation of PX (t) in an external field Bext: the weak collision model (2)

Now, for a stationary Gaussian process,〈
exp

[
i
∫ t

0
γµδBZ

loc(t ′)dt ′
]〉

= exp
[
−
∫ t

0
dt ′
∫ t

0
γ2
µ

〈
δBZ

locδBZ
loc (t ′ − t ′′)

〉
dt ′′
]
,

(14)
where δBZ

loc(t ′) = BZ
loc(t ′)− 〈BZ

loc〉. Using Doob’s theorem and the relation∫ t

0
dt ′
∫ t

0
f (t ′ − t”)dt” = 2

∫ t

0
(t − τ)f (τ)dτ (15)

where f (t) is an even function, we get

PX (t) = exp
{
−
γ2
µ∆2

G
ν2

c
[exp(−νct)− 1 + νct]

}
cos

(
γµ〈BZ

loc〉t
)
, (16)

with ∆2
G = 〈(Bα

loc)2〉.
Equation 16 is the so-called Abragam formula (Anderson, 1954).



Dynamical polarization functions
The Abragam function

PX (t) = exp
{
−
γ2
µ∆2

G
ν2

c
[exp(−νct)− 1 + νct]

}
cos

(
γµ〈BZ

loc〉t
)

(16)

I For νc � γµ∆G,

PX (t) = exp
(
−γ2

µ∆2
Gt2/2

)
× cos

(
γµ〈BZ

loc〉t
)
.

I For νc � γµ∆G,

PX (t) = exp (−λX t)

× cos
(
γµ〈BZ

loc〉t
)
,

with λX = γ2
µ∆2

G/νc = γ2
µ∆2

Gτc.
This is the so-called motional
narrowing limit (NMR language).

Examples of Abragam function



Dynamical polarization functions
Computation of PZ (t): the strong collision model (1)

I Let ` be the number of changes for Bloc(t) during the muon life time,

PZ (t) =
+∞∑
`=0

R`(t), (17)

where R`(t) is the contribution to PZ (t) of muons which have
experienced ` field changes between 0 and t.

I Now,
R0(t) = Pstat

Z (t) exp(−νct), (18)

since the probability for Bloc(t) to be unchanged between 0 and t is
exp(−νct).



Dynamical polarization functions
Computation of PZ (t): the strong collision model (2)

I For ` = 1 field change and since the process is Gaussian-Markovian,

R1(t) =

〈∫ t

0

SZ
µ,j (t − t ′)

Sµ
exp[−νc(t − t ′)]νc

SZ
µ,i (t ′)
Sµ

exp(−νct ′)dt ′
〉

ij

= νc

∫ t

0
R0(t − t ′)R0(t ′)dt ′. (19)

I Recursion relation:

R`+1(t) = νc

∫ t

0
R`(t − t ′)R0(t ′)dt ′. (20)

I From Eq. 20 and the definition PZ (t) =
∑+∞
`=0 R`(t),

+∞∑
`=0

R`+1(t) = νc

∫ t

0
PZ (t − t ′)R0(t ′)dt ′ = PZ (t)− R0(t), (21)

. . .



Dynamical polarization functions
Computation of PZ (t): the strong collision model (3)

which can be rewritten as the integral equation

PZ (t) = Pstat
Z (t) exp(−νct) + νc

∫ t

0
PZ (t − t ′)Pstat

Z (t ′) exp(−νct ′)dt ′, (22)

or in terms of Laplace transforms (f (s) =
∫ t

0 f (t) exp(−st)dt),

PZ (s) =
Pstat

Z (s + νc)

1− νcPstat
Z (s + νc)

. (23)



Dynamical polarization functions
PZ (t) in zero external field for an isotropic Gaussian distribution of field
Recall

Pstat
Z (t) = PKT(t) =

1
3 +

2
3 (1− γ2

µ∆2
Gt2) exp

(
−
γ2
µ∆2

Gt2

2

)
, (10)

I For νc � γµ∆G,

PZ (t) ' 1
3 exp

(
−2

3νct
)

+
2
3 (1− γ2

µ∆2
Gt2) exp

(
−
γ2
µ∆2

Gt2

2

)
. (24)

High sensitivity to slow dynamics.

I For νc � γµ∆G,

PZ (t) = exp (−λZ t) , (25)

with
λZ = 2γ2

µ∆2
G/νc. (26)

(motional narrowing limit).

νc
γµ∆G

=



Dynamical polarization functions
PZ (t) in a longitudinal field for an isotropic Gaussian distribution of field

I For νc � γµ∆G,

PZ (t) = exp (−λZ t) , (27)

with

λZ =
2γ2

µ∆2
Gνc

ν2
c + ω2

µ

(28)

(Redfield formula) and
ωµ = γµBext.

νc
γµ∆G

=

PZ (t) for Bext = 3∆G.
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The polarization functions from a quantum approach
A flavor for zero and longitudinal field experiments

µ+: spin 1/2.

At thermodynamical equilibrium, the populations of the two states are
equal since ~ωµ � kBT .
Indeed, for Bloc = 1 T, ~ωµ = 0.56 µeV ( = kBT for T = 6.5 mK).



The polarization functions from a quantum approach
Derivation of PZ (t) (1)

PZ (t) = 2 Tr [ρsSZ
µ SZ

µ (t)] (29)

with
SZ
µ (t) = exp

(
iHt
~

)
SZ
µ exp

(
−iHt

~

)
(30)

where ρs is the density operator and H is the Hamiltonian for the
muon-system ensemble.



The polarization functions from a quantum approach
Derivation of PZ (t) (2)

After some computation,

PZ (t) ' exp[−ψZ (t)] (31)

with

ψZ (t) = 2πγ2
µ

∫ t

0
(t − τ) cos (ωµτ)

[
ΦXX (τ) + ΦYY (τ)

]
dτ. (32)

where Φαβ(τ) = 1
4π

[〈
δBα

loc(τ)δBβ
loc

〉
+
〈
δBβ

locδBα
loc(τ)

〉]
is the field

correlation function and ωµ = γµBext.



The polarization functions from a quantum approach
Derivation of PZ (t) (3)

Assuming Φαβ(τ) to decay rapidly on the µSR time t scale, we get
ψZ (t) = λZ t with

λZ = πγ2
µ

[
ΦXX (ωµ) + ΦYY (ωµ)

]
. (33)

Φαβ(ωµ) is the time Fourier transform of Φαβ(τ).

If Φαα(τ) = 1
2π 〈(δB

α
loc)2〉 exp (−νc|τ |) and Bext = 0,

λZ = γ2
µ

(
〈(δBX

loc)2〉+ 〈(δBY
loc)2〉

)
/νc, (34)

which can be identified to

λZ = 2γ2
µ∆2

G/νc. (26)
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The magnetic field at the muon site
The dipolar field arising from localized spins Jj with Landé factors g is

Bdip = −µ0
4πgµB

∑
j

[
−Jj

r3
j

+ 3(Jj · rj)rj
r5
j

]
. (35)

rj is the vector distance from the spin to the muon.

When a Polaris ed electron density is present at the muon, an additional
contribution is present, the hyperfine field:

Bhyp = −µ0
4πgµB

∑
j∈NN

HjJj . (36)

Only the muon nearest neighbors (NN) usually contribute to Bhyp.
When both Bdip and Bhyp contribute to Bloc (i.e. in metals) they generally
have the same order of magnitude.
Altogether

Bloc = −µ0
4π

gµB
vc

∑
j

G jJj . (37)

G is the muon-system coupling tensor.



Spin-lattice relaxation rate λZ and spin-correlation function
From

λZ = πγ2
µ

[
ΦXX (ωµ) + ΦYY (ωµ)

]
, (33)

introducing the space Fourier transform,

J(q) =
1
√nc

∑
j

Jj exp(−iq · j), (38)

we get

λZ =
D
2

∫ ∑
αβ

Aαβ(q)Λαβ(q, ωµ)
d3q

(2π)3 . (39)

Λαβ(q, ω) =
1
2
[〈
δJα(q, ω)δJβ(−q)

〉
+
〈
δJβ(−q)δJα(q, ω)

〉]
(40)

is the spin correlation tensor,

Aαβ(q) = GXα(q)GXβ(q) + GYα(q)GYβ(q) (41)

is the muon-system coupling factor, and D =
(µ0

4π
)2
γ2
µ(gµB)2/vc.



Spin-lattice relaxation rate λZ and spin-correlation function

Recall
λZ =

D
2

∫ ∑
αβ

Aαβ(q)Λαβ(q, ωµ)
d3q

(2π)3 . (39)

λZ is an integral of the spin-correlation function taken near 0 energy (neV
range) over the Brillouin zone with a weighting factor depending on the
muon site.
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Comparison of dynamical ranges accessible to different
techniques
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Spin dynamics in magnets
Case of an anisotropic magnet

I Spontaneous field parallel to c-axis.
I Divergence of λZ (Sµ ⊥ c) at the

magnetic transition (TN = 57 K):
νc ↘ i.e. slowing down of magnetic
fluctuations (‖ c); critical dynamics.

I Large anisotropy of λZ (T ).
Gubbens et al., Hyp. Int. 85, 245 (1994).



Spin dynamics in magnets
Case of a weakly anisotropic magnet

I Magnetic transition at TC ' 32 K.
I λZ (T ) nearly isotropic.
I Dipolar interaction between the spins responsible for λZ (T ) saturation

close to TC.

Yaouanc et al., PRB 53 350 (1996); see also Yaouanc et al., PRB 47 796 (1993).



Muon spin relaxation induced by excitations
Recall

λZ =
D
2

∫ ∑
αβ

Aαβ(q)Λαβ(q, ωµ)
d3q

(2π)3 . (39)

I λZ probes Λαβ(q, ωµ) at an energy ~ωµ in the neV range.
I Since any gap in the excitation spectrum is normally much larger, a

process involving a single excitation cannot relax the muon spin.
I If an excitation at q is, say, annihilated while a second one at q′ is

created satisfying ωq − ωq′ − ωµ = 0, the energy conservation is
ensured and a two excitation (Raman) process can relax the muon spin.

I Example: for a ferromagnet with ~ωq = Dmq2 + ∆gap,
λZ (T ) ∝ T 2

D3
m

ln
(

kBT
∆gap

)
for kBT � ∆gap.

I No relaxation at low temperature is expected for a “large” spin gap
(∆gap � kBT ).

Dalmas de Réotier and Yaouanc, PRB 52, 9155 (1995).



Muon spin relaxation induced by excitations

Relaxation through a Raman process:
λZ (T ) ∝ T 2

D3
m

ln
(

kB T
∆gap

)
with Dm = 3.2 (1) meV Å2.

No relaxation at low temperature due to large anisotropy.
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Spin dynamics in spin glasses (1)
I Spin glass: dilute magnetic impurities in a non magnetic matrix.
I Physical characteristics:

I cusp in the low field susceptibility at Tg,
I broad peak in the specific heat around Tg,
I important dynamical effects.

I µSR in usual paramagnets (motional narrowing limit):
I PZ (t) = exp(−λZ t) with

λZ =
2γ2
µ∆2

Gνc

ν2
c + γ2

µB2
ext
, (28)

which follows from Λ(τ) ∝ exp(−νc|τ |).
I PZ (t,Bext) = PZ (t/B2

ext) if γµBext � νc .
I µSR in spin glass above Tg (motional narrowing limit):

I PZ (t) = 〈exp(−λZ t)〉∆G
.

I if Λ(τ) ∝ exp[−(ζ|τ |)β],
PZ (t,Bext) = PZ (t/Bγext) with γ = 1 + β if γµBext � ζ.

I if Λ(τ) ∝ τ−α exp[−(ζ|τ |)β],
PZ (t,Bext) = PZ (t/Bγext) with γ = 1− α if ζ|τ | � 1,



Spin dynamics in spin glasses (2)

µSR spectra for different Bext. The same spectra plotted as a function of
t/Bγext with γ = 0.76(5).

The data are only consistent with the cut-off power law:
Λ(τ) ∝ τ−α exp[−(ζ|τ |)β] with α = 0.24 (5) and ζ|τ | � 1.
Keren et al., PRL 77, 1386 (1996).
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Complementarity with other techniques
Mössbauer spectroscopy, Yb2Ti2O7 (1)

I Pyrochlore crystal structure.
I Current interest in highly frustrated magnetism:

I Spin ice and quantum spin ice ground states.
I Emergent magnetic monopoles.

Specific heat: transition at 0.25 K.

T ≥ 0.275 K, PZ (t) = exp(−λZ t).
T ≤ 0.200 K, depolarization by nearly static
electronic moments: νµ ' 1 MHz.

Hodges et al., PRL 88, 077204 (2002).



Complementarity with other techniques
Mössbauer spectroscopy, Yb2Ti2O7 (2)

Comparison of the Yb3+ spin fluctuation rates as
determined from Mössbauer (νM) and µSR (νµ)
spectroscopies using the formula

λZ = 2γ2
µ∆2

G/νµ. (26)

−→ Good agreement found for ∆G = 80 mT.
170Yb Mössbauer spectra.

Conclusion: first order transition in the spin dynamics.
Hodges et al., PRL 88, 077204 (2002), Yaouanc et al., Physica B 326, 456 (2003).



Complementarity with other techniques
Neutron scattering, Tb2Sn2O7 (1)

M
ire

be
au

et
al

.,
PR

L
94

,2
46

40
2

(2
00

5)
.

All µSR spectra are exponential, no signature for a transition.
Dalmas de Réotier et al., PRL 96, 127202 (2006).



Complementarity with other techniques
Neutron scattering, Tb2Sn2O7 (2)

Spontaneous field at muon site is the Tb3+ dipolar field.
No signature of it because, either

I it cancels for symmetry reason:
unlikely because of

I low symmetry expected for the muon site
I relatively complicated magnetic structure with ferromagnetic and

antiferromagnetic components,
I or it is dynamical.

Let’s apply the result of the strong collision model:

PZ (s) =
Pstat

Z (s + νc)

1− νcPstat
Z (s + νc)

. (23)
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Complementarity with other techniques
Neutron scattering, Tb2Sn2O7 (3)

Assumption: Bloc takes two values ±Bfl: Pstat
Z (t) = cos(γµBflt).

Pstat
Z (s) =

s
s2 + γ2

µB2
fl

; PZ (s) =
s + νc

s2 + νcs + γ2
µB2

fl
.

Two cases
I νc < 2γµBfl:

PZ (t) = exp(−νct)
cos(ωefft − ϕ)

cosϕ
I νc > 2γµBfl

PZ (t) = exp(−νct)
cosh(νefft − ϕ)

coshϕ
In the extreme motional narrowing limit: νc � 2γµBfl

PZ (t) = exp (−λZ t) with λZ =
γ2
µB2

fl
νc



Complementarity with other techniques
Neutron scattering, Tb2Sn2O7 (4)

Dalmas de Réotier et al., PRL 96, 127202
(2006).

Chapuis et al., JPCM 19, 446206 (2007).

I From λZ =
γ2
µB2

fl
νc

and the estimate Bfl =
0.2 T, we get νc ' 1010 s−1.

I 〈Bloc(t) · Bloc〉 ∝
∫
K(Q)S(Q, t)Q2dQ.

I Neutron spin echo data:
spin correlations are static for Q → 0 and
dynamical (5× 1010 s−1) for Q &0.3 Å−1.

Rule et al., JPCM 21, 486005 (2009).
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Mixed phase of superconductors
Type II superconductors submitted to a magnetic field:

Field (deviation) profile in the flux-line lattice
phase.

Associated field distribution.

I mixed phase: Bc1 < Bext < Bc2,
I characteristic length scales

I London penetration depth,
I vortex core radius,
I coherence lengths of the flux line lattice.



Mixed phase of superconductors
Flux-line lattice melting in Bi2.15Sr1.85CaCu2O8+δ

Field distribution at different
temperatures amd fields.

Skewness and second moment
of the distribution.

Phase diagram and comparison
with a.c. susceptibility data.

First evidence from microscopic measurement of the vortex lattice melting
in a superconductor.
Lee et al., PRL 71, 3862 (1993); see also Cubitt et al., Nature 365, 407 (1993).



Mixed phase of superconductors
Vortex motion driven by an electrical current

Effect of a current on the field distribution
measured in a Pb-In alloy.

Velocity of flux line flow vs applied current.

I Measure of vortex velocity.
I Influence of sample boundaries on the amount of disorder in the vortex

lattice.
Charalambous et al., PRB 73, 105414 (2006).
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Diffusion of Li+
Principle of operation of a Li-ion battery

Reversible exchange of Li+ ions between electrode materials.

The process involves the diffusion of Li+ ions in, e.g. the positive electrode
material.



Diffusion of Li+
Diffusion coefficient D of Li+ in the electrode material: macroscopic level

I Fick’s laws

J = −D ∂φ
∂x and ∂φ

∂t = D ∂2φ

∂x2

in 1-dimension.
(J is the Li+ ion flux and φ the Li+ concentration).

I Experimental determination through electrochemistry.
Need for a functional battery with

I a material for the second electrode,
I an electrolyte,
I coating for enhanced electron conductivity,
I . . .



Diffusion of Li+
Diffusion coefficient D of Li+ in the electrode material: microscopic level

I Random walk of Li+ ions between lattice or
interstitial sites

I

D ∝ `2

τ

` = distance between Li+ sites
τ = mean residence time

I Since D ∼ 10−9 - 10−12 cm2 s−1 at RT and
` ∼ 0.2 - 0.3 nm, τ ∼ 0.01 - 10 µs.

I Microscopic techniques:
I Neutron scattering: 1 ns - 1 ps
I Nuclear magnetic resonance: 1 ms?

Line broadening associated to
paramagnetism of 3d element

I Muon spin relaxation



Diffusion of Li+
µSR study of Lix Mn1.96Li0.04O4

Kaiser et al., PRB 62, R9236 (2000).

I Sensitivity to nuclear and electronic
fields:
PZ (t) = PKT(t,∆G, ν) exp(−λZ t)

I µ+ static from shape of PZ (t) at early
times: νc ' 0.1 µs−1.

I Nuclear field originating from 55Mn, 6Li
and 7Li.

I Change in ∆G due to Li+ motion:
τ < 0.1 µs.



Diffusion of Li+
Li+ diffusion coefficient in Lix CoO2 determined from µSR

Experimental and theoretical values (ab initio computation) of the diffusion coefficient.

Sugiyama et al., PRL 103, 147601 (2009)
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Summary

I Basic models for PX ,Z (t) in dynamical fields.
I Examples of the use of the muon techniques for the study of dynamics

in condensed matter:
I fluctuations and excitations in magnets, critical slowing down,
I dynamical effects in superconductors,
I atomic diffusion.

I Not treated
I onset of correlation involving small and dynamical spins in heavy

fermions systems,
I dynamics in thin films,
I diffusion of muonium centers, electrons in chain polymers, or light

interstitials,
I use of muons as a spin label for information on chemical reactions,
I . . .
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