PULSE 善STANFORD S

Ultrafast processes in the solid state: Light scattering from elementary excitations

David A. Reis
Stanford PULSE Institute
dreis@stanford.edu

Ultrafast Time Scales

Ultrafast Science explores the dynamics of the microscopic world:

- Making or breaking of chemical bonds
- Atomic and Electron dynamics in materials
attoseconds to femtoseconds:
electron motion/correlation,...
femtoseconds to picoseconds:
vibrational motion, electron-phonon and phonon-phonon scattering,

First, some advantages of time-domain measurements

Sheu et al. unpublished
...Excited State Dynamics

...sometimes just plain resolution!

Murray et al. PRB 72, 060301 (R) 2005.

For perfect crystal, can write down Hamiltonian, but cannot solve.

$H=H\left(\mathbf{r}_{\mathrm{i}}, \mathbf{p}_{\mathbf{i}}, \mathbf{R}_{\mathbf{j}}, \mathbf{p}_{\mathrm{j}}\right)$

$$
H=\sum_{i} \frac{p_{i}^{2}}{2 m_{i}}+\sum_{j} \frac{P_{j}^{2}}{2 M_{j}}+\frac{1}{2} \sum_{j^{\prime} \neq j} \frac{Z_{j^{\prime}} Z_{j} e^{2}}{\left|\vec{R}_{j}-\vec{R}_{j^{\prime}}\right|}-\sum_{i, j} \frac{Z_{j} e^{2}}{\left|\vec{r}_{i}-\vec{R}_{j}\right|}+\frac{1}{2} \sum_{i^{\prime} \neq i} \frac{e^{2}}{\left|\overrightarrow{r_{i}}-\vec{r}_{i^{\prime}}\right|}
$$

$$
\begin{gathered}
\mathrm{H}=\mathrm{H}_{\mathrm{ion}}\left(\mathbf{R}_{\mathrm{j}}\right)+\mathrm{H}_{\mathrm{e}}\left(\mathbf{r}_{\mathrm{i}}, \mathbf{R}_{\mathrm{j} 0}\right) \\
+\mathrm{H}_{\mathrm{e}-\mathrm{ion}}\left(\mathbf{r}_{\mathrm{i},} \delta \mathbf{R}_{\mathrm{j} 0}\right)+\ldots
\end{gathered}
$$

Born-Oppenheimer, valence/core and mean-field approximations, +pert. theory with help from translational and point-group symmetries... ...single-particle excitations (electron-hole) and collective vibrations (phonons)

Stir in your favorite terms in the Hamiltonian...

Light Scattering and connection with elementary excitations

Response to Applied Field

$$
\begin{gathered}
P_{i}(\vec{r}, t)=\int \chi_{i j}\left(\vec{r}^{\prime}, \vec{r}, t^{\prime}, t\right) E_{j}\left(\vec{r}^{\prime}, t^{\prime}\right) \mathrm{d} \vec{r}^{\prime} \mathrm{d} t^{\prime} \\
P_{i}(\vec{q}, \omega)=\chi_{i j}(\vec{q}, \omega) E_{j}(\vec{q}, \omega) \\
\epsilon_{i j}(\vec{q}, \omega)=1+4 \pi \chi_{i j}(\vec{q}, \omega)
\end{gathered}
$$

- In linear Response, χ doesn't depend on E
- Causality, P follows E
- We will see excitation spectrum related to peaks in imaginary χ, ε
- Also related to the dynamical structure factor and van Hove correlations

At long wavelengths local response

$$
\begin{gathered}
P(t)=\int_{0}^{\infty} \chi\left(t^{\prime}\right) E\left(t-t^{\prime}\right) \mathrm{d} t^{\prime} \\
\epsilon(\omega)=\epsilon_{r}(\omega)+i \epsilon_{i}(\omega)=1+\int_{0}^{\infty} 4 \pi \chi\left(t^{\prime}\right) \mathrm{e}^{i \omega t^{\prime}} \mathrm{d} t^{\prime}
\end{gathered}
$$

Kramers-Kronig, follows from causality

$$
\begin{aligned}
& \epsilon_{r}(\omega)-1=\frac{2}{\pi} \operatorname{Pr} \int_{0}^{\infty} \frac{\omega^{\prime} \epsilon_{i}\left(\omega^{\prime}\right)}{\omega^{\prime 2}-\omega^{2}} \mathrm{~d} \omega^{\prime} \\
& \epsilon_{i}(\omega)=-\frac{2 \omega}{\pi} \operatorname{Pr} \int_{0}^{\infty} \frac{\epsilon_{r}\left(\omega^{\prime}\right)}{\omega^{\prime 2}-\omega^{2}} \mathrm{~d} \omega^{\prime}
\end{aligned}
$$

Can obtain real from imaginary part and vice versa, given knowledge everywhere However, note that primary contribution near ω

Microscopic picture of light interacting with electrons/ions

Microscopic picture: Light-matter interaction as perturtabation to (single electron, or ion) Hamiltonian

$$
\begin{gathered}
H_{0}=\frac{p^{2}}{2 m}+V(\vec{r}) \\
\vec{E}=-\frac{1}{c} \frac{\partial \vec{A}}{\partial t}, \vec{B}=\nabla \times \vec{A} \quad \Phi=0, \nabla \cdot \vec{A}=0 \\
\vec{p} \rightarrow \vec{p}-\frac{e \vec{A}}{c} \\
H=H_{0}+H_{e R}=\frac{p^{2}}{2 m}+V(\vec{r})+\frac{e}{m c} \vec{A} \cdot \vec{p}+\frac{e^{2} A^{2}}{2 m c^{2}}
\end{gathered}
$$

- In dipole approx. $p \bullet A$ equivallent to $\mu \bullet E$
- A² term typically neglected at optical wavelengths in linear response regime
- A^{2} dominant for x-ray scattering except very near resonance

Long-wavelength make dipole approximation

$$
\lambda \gg a, q \approx 0 \rightarrow \vec{A} \approx \vec{A}_{0} \mathrm{e}^{i \omega t}+c . c
$$

Time dependent perturbation theory gives transition rate for SPE...
$w(\omega)=\frac{2 \pi}{\hbar}\left(\frac{e}{m \omega}\right)^{2}\left(\frac{E(\omega)}{2}\right)^{2} \sum_{\vec{k}}\left|P_{c v}\right|^{2} \delta\left(E_{c}(\vec{k})-E_{v}(\vec{k})-\hbar \omega\right)$
Same matrix elements appear in $\operatorname{Im}\{\varepsilon\}$

$$
\epsilon_{i}(\omega)=\left(\frac{2 \pi e}{m \omega}\right)^{2} \sum_{\vec{k}}\left|P_{c v}\right|^{2} \delta\left(E_{c}(\vec{k})-E_{v}(\vec{k})-\hbar \omega\right)
$$

- Similar for phonons, plasmons and other excitations
- More generally for finite q

FIRST-ORDER COUPLING TO ELECTRONS

Adapted from R. Merlin.

$q=0$ excitons

DISCRETE (exciton) vs. (interband) CONTINUUM

FIRST-ORDER COUPLING TO PHONONS (FAR TO MID INFRARED)

GaAs

Reduced wave vector coordinate (5)

DISCRETE (1 phonon) vs. (2 phonon) CONTINUUM

Phonons in 1D

$$
u_{j} \quad u_{j+1}
$$

$$
M \quad K
$$

$$
M \frac{d^{2} u}{d t^{2}}=K\left(u_{j+1}-2 u_{j}+u_{j-1}\right)
$$

Propose solutions: $\quad u_{j}=\epsilon e^{i\left(q R_{j}-\omega t\right)}$
relationship between ω and \mathbf{q}, dispersion relation:

$$
\omega=2 \sqrt{\frac{K}{M}}|\sin (q d / 2)|
$$

ω linear for $|q| \ll 1 / d$: acoustic phonons

Phonons in 1D

$$
\text { Now } \quad M_{1} \neq M_{2}
$$

$$
\begin{aligned}
& M_{1} \frac{d^{2} u^{(1)}}{d t^{2}}=K\left(u_{j}^{(2)}-2 u_{j}^{(1)}+u_{j-1}^{(2)}\right) \\
& M_{2} \frac{d^{2} u^{(2)}}{d t^{2}}=K\left(u_{j+1}^{(1)}-2 u_{j}^{(2)}+u_{j}^{(1)}\right)
\end{aligned}
$$

Propose solutions: $\quad u_{j}^{(1,2)}=\epsilon^{(1,2)} e^{i\left(q R_{j}-\omega t\right)}$
dispersion relation:

FIRST-ORDER COUPLING TO PHONONS (EXCITONS)

RAMAN COUPLING TO PHONONS (TRANSPARENT MEDIA)

DISPLACEMENTS

($u \equiv$ ions ; $Q \equiv$ phonons)

ELECTROMAGNETIC ENERGY DENSITY

$$
U=\varepsilon|E(\mathbf{r}, t)|^{2} / 8 \pi
$$

CHANGE IN DIELECTRIC RESPONSE
Ω
CHANGE IN ENERGY DENSITY

$$
\underset{\substack{\text { FIRST-ORDER } \\ \text { IMPULSIVE FORCE }}}{F \propto\left|E^{2}(t)\right|}
$$

FORCE
DENSITY
CHANGE IN
ENERGY
DENSITY
FORCE
DENSITY

$$
\begin{aligned}
& \delta U \approx \delta \varepsilon_{\mathbf{q}=0}|E(\mathbf{r}, t)|^{2} / 8 \pi=\frac{|E(\mathbf{r}, t)|^{2}}{8 \pi} \times \\
& \sum_{s}\left(\partial \varepsilon / \partial Q_{s, \mathbf{q}=0}\right) Q_{s, \mathbf{q}=0}+\sum_{s t, \mathbf{q}}\left(\partial^{2} \varepsilon / \partial Q_{s, \mathbf{q}} \partial Q_{t, \mathbf{q}}\right) Q_{s, \mathbf{q}} Q_{t, \mathbf{q}}+\ldots
\end{aligned}
$$

$$
\delta \varepsilon=\sum_{i m}\left(\partial \varepsilon / \partial u_{i m}\right) u_{i m}+\sum_{i m n}\left(\partial^{2} \varepsilon / \partial u_{i m} \partial u_{j n}\right) u_{i m} u_{j n}+\ldots
$$

$$
F \propto\left|E^{2}(t)\right| \quad F \propto Q_{\mathbf{k}}\left|E^{2}(t)\right|
$$

SECOND-ORDER
IMPULSIVE CHANGE OF FREQUENCY

IMPULSIVE STIMULATED RAMAN SCATTERING

Non-Raman Mechanisms?

DISPLACIVE EXCITATION OF Coherent Phonons

> (WORKS ONLY FOR FULLYSYMMETRIC MODES)

$\mathrm{Ti}_{2} \mathrm{O}_{3}$

FIG. 3. (a) The pump-induced coherent phonon amplitude produces a $\Delta R / R$ as large as 12% initially. This plot convolved with the optical pulse intensity profile yields the least-squares fit to the data in Fig. 2. The fitting function is taken to be an exponentially damped cosine, superimposed on an exponentially decaying background (Ref. 6). (b) The coherent phonon frequency is initially down-shifted by 7%, but subsequently decays back to the 7.0 THz Raman frequency. This plot was obtained by fitting 0.5 ps blocks of the data from Fig. 2 to a decaying sinusoid, superimposed on an exponentially decaying background.

Chen et al., Appl. Phys. Lett. 62, 1901 (1993)

Comparison of spontaneous and pump-probe yield femtosecond decay of Raman coherences (Force)

Li et al., Phys Rev. Lett. 110, 047401 (2013)

Squeezed Phonons, q=0 excitation and measurement

Vacuum Squeezing of Solids: Macroscopic Quantum States Driven by Light Pulses

G. A. Garrett, A. G. Rojo, A. K. Sood," J. F. Whitaker, R. Merlin \dagger

Fomtosecond laser pulsas and cohorant two-phonon Fayman scattoring ware used to owits KTaO , into a squogzod state, noarly periodic In time, In which the variance of the atomic displacomonts dips bolow the standard quantum Ilmil for half of a cycle. This nonclasical state irvolvas a continuum of trarevarse acoustio modas that leads to oscillations in the rafractive index assochatodwith the froquency of a van Hove singularty in the phonon densily of statas.

Squeruine refers to a clas of quantum trechanial stita of the electratragistic field and, troer genetally, of harmonic uecillators fot which the fluctuationa in two comingete narisbles avillste out of phae and becotre abermatively squead beluw the valua foe the vacuum ntate for motne fraction of a grcle (I). Thus, a xquesod alectrutroghotic field provide a way for experimental mevure-
ctptal, $K T x O_{3}$, with an ultrafart pule of lipht. The mesoutctnents wete perfoetned with the standaod purme-probe setup (Fie. 1) Secund-oader coupling of the photatis with the battice vibratiota [lpecificallp. trahrvene acnutic (TA) modal menumber to an impulaive changs in the phonon frequancy that eive trime to squecring this machanism is clonely orlated to that uned so

Fig 4. Byotrortal ime 4 apencernce of the
 Arphuso of Y as a tintion of

(84)

X-ray Scattering and connection with elementary excitations

Inelastic X-ray (and Neutron) Scattering

Correlations in Space and Time and Born Approximation Scattering in Systems of Interacting Particles

Léon Van Hove

Institute for Advanced Study, Princeton, New Jersey
(Received March 16, 1954)

$$
\frac{d^{2} \sigma}{d \Omega d \epsilon}=A S(\kappa, \omega),
$$

$$
\delta(\boldsymbol{\kappa}, \omega)=(2 \pi)^{-1} N \int \exp [i(\boldsymbol{\kappa} \cdot \mathbf{r}-\omega t)] \cdot G(\mathbf{r}, t) d \mathbf{r} d t
$$

$$
G(\mathbf{r}, t)=(2 \pi)^{-3} N^{-1} \sum_{l, j=1}^{N} \int d \mathbf{k} \exp (-i \mathbf{k} \cdot \mathbf{r})
$$

$$
\cdot\left\langle\exp \left\{-\imath \mathbf{k} \cdot \mathbf{r}_{l}(0)\right\} \cdot \exp \left\{i \mathbf{k} \cdot \mathbf{r}_{j}(t)\right\}\right\rangle
$$

$S(Q, \omega)$ Related to the imaginary part of density-density response function

Inelastic X-ray Scattering: $S(\vec{Q}, \omega) \propto \sum_{j} \int \mathrm{~d} t \mathrm{e}^{i \omega t}\left\langle u_{j, \vec{Q}}(0) u_{j,-\vec{Q}}(t)\right\rangle$

M. Le Tacon et. al, Nat. Phys. 10,52 (2014)

X-ray Diffuse Scattering: $\quad S(\vec{Q}) \propto \sum_{j}\left\langle u_{j, \vec{Q}}(0) u_{j,-\vec{Q}}(0)\right\rangle$

fit to Bose-Einstein distribution.

M. Holt et al., PRL 83 (1999).

Time and momentum-domain x-ray scattering

Trigo et al. Nature Physics. 9, 790, 2013

Non-equillibrium populations

phonon-phonon interactions

Non-equillibrium frequency (forces)

Electron-phonon interactions

Classical Picture of X-ray Scattering from Phonons

$$
\begin{aligned}
\vec{u}_{n} & =\vec{u} \cos (\Omega t+\delta) \cos \left(\vec{q} \cdot \vec{R}_{n}\right) \\
z_{n} & =z(t)=\vec{K} \cdot \vec{u} \cos (\Omega t+\delta)
\end{aligned}
$$

$$
\begin{aligned}
I(\vec{K}, t) & =I_{e}|f|^{2} \mathrm{e}^{-\frac{1}{2} z^{2}(t)} \\
& N^{2} \delta(\vec{K}-\vec{G})+ \\
& N^{2} z^{2}(t) \delta(\vec{K}-\vec{G} \pm \vec{q})+ \\
& +N z(t)) \delta(\vec{K}-\vec{G} \pm \vec{q}))+\ldots
\end{aligned}
$$

Change in forces induces temporal coherence

$\mathrm{t}=0 \mathrm{ps}$

$$
\left\langle\left(\vec{Q} \cdot u_{-\vec{q}}(t)\right)\left(\vec{Q} \cdot u_{\vec{q}}(t)\right)\right\rangle
$$

Sudden Softening squeezed thermal vibrations

Time and momentum-domain x-ray scattering:

Femtosecond time domain diffuse images:

$$
\mathrm{t}=-2 \mathrm{ps}
$$

Ge, differential signal after high-pass filter (for emphasis)

extracted TA phonon dispersion (Ge)

independent modes (oscillation at twice frequency):

$$
\left\langle u_{q} u_{-q}\right\rangle=\frac{1}{4 m \omega_{q}}\left(\left(1+\frac{\omega_{q}^{2}}{\omega_{q}^{2 \prime}}\right)+\left(1-\frac{\omega_{q}^{2 \prime}}{\omega_{q}^{2}}\right) \cos \left(2 \omega^{\prime} \tau\right)\right)
$$

Lattice dynamics of PbTe

ARTICLES

nature
PUBLISHED ONLINE: 5 JUNE 2011 | DOI: 10.1038/NMAT3035

Giant anharmonic phonon scattering in PbTe

O. Delaire ${ }^{1 \star}$, J. Ma ${ }^{1}$, K. Marty ${ }^{1}$, A. F. May ${ }^{2}$, M. A. McGuire ${ }^{2}$, M-H. Du ${ }^{2}$, D. J. Singh ${ }^{2}$, A. Podlesnyak ${ }^{1}$, G. Ehlers ${ }^{1}$, M. D. Lumsden ${ }^{1}$ and B. C. Sales ${ }^{2}$

PHYSICAL REVIEW B 86, 085313 (2012)
$\%$
Lattice dynamics reveals a local symmetry breaking in the emergent dipole phase of PbTe
Kirsten M. Ø. Jensen, ${ }^{1}$ Emil S. Božin, ${ }^{2}$ Christos D. Malliakas, ${ }^{3}$ Matthew B. Stone, ${ }^{4}$ Mark D. Lumsden, ${ }^{4}$ Mercouri G. Kanatzidis, ${ }^{3,5}$ Stephen M. Shapiro, ${ }^{2}$ and Simon J. L. Billinge ${ }^{2,6}$

100200300400500600
Temperature (K)

PbTe differential scattering (2 $\mu \mathrm{m}$ pump, $1.4 \AA$ probe)

$\mathrm{I}(\mathrm{t}=3 \mathrm{Ps})-\mathrm{I}($ laser off $)$

PbTe near zone-center 100 fs steps (re-binned)

Approximately (0.01 . 01.01) - (0.05 0.0 .09)

M.P. Jiang et al., in preparation

PbTe (Г to X) 100 fs steps (re-binned)

Near 「[00.10] to $\mathrm{X}\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$ in 0.05 steps (with tolerance levels $+/-0.03$)

Identification based on Cohran,
Proc. R. Soc. Lond. A 293: 433 (1966)
M.P. Jiang et al., in preparation

Comments on FT-IXS

- Femtosecond x-ray scattering from large wave-vector phonon pairs excited by long-wavelength laser.
- harmonic crystal (Ge): coherences in $\left\langle\mathrm{x}_{\mathrm{TA}, \mathrm{q}} \mathrm{x}_{\mathrm{TA},-\mathrm{q}}\right\rangle$ at $2 \omega_{\mathrm{q}}$
- anharmonic crystal (PbTe): coherences in $\left\langle\mathrm{x}_{\mathrm{j}, \mathrm{q}} \mathrm{X}_{\mathrm{j}^{\prime},-\mathrm{q}}\right\rangle$ two-phonon combination modes ($\mathrm{j} \neq \mathrm{j}$ ' as well as $\mathrm{j}=\mathrm{j}$).
- Resolution limited by maximum delay (sub-meV demonstrated). Range limited by time-resolution (sub-80 fs demonstrated)
- Broad-band x rays, no crystal analyzers and parallel detection of momentum transfer.
- Applicable near and far from equilibrium.

Acknowledgements (Ge expt.)

LETTERS

Fourier-transform inelastic X-ray scattering from time- and momentum-dependent phonon-phonon correlations

M. Trigo ${ }^{1,2}$, , M. Fuchs ${ }^{1,2}$, J. Chen ${ }^{1,2}$, M. P. Jiang ${ }^{1,2}$, M. Cammarata ${ }^{3}$, S. Fahy ${ }^{4}$, D. M. Fritz ${ }^{3}$, K. Gaffney ${ }^{2}$, S. Ghimire ${ }^{2}$, A. Higginbotham ${ }^{5}$, S. L. Johnson ${ }^{6}$, M. E. Kozina ${ }^{2}$, J. Larsson ${ }^{7}$, H. Lemke ${ }^{3}$, A. M. Lindenherg ${ }^{1,2,8}$ G. Ndabashimiye ${ }^{2}$, F. Quirin ${ }^{9}$, K. Sokolowski-Tinten ${ }^{9}$, C. Uher ${ }^{10}$, G. Wang ${ }^{10}$, J. S. Wark ${ }^{5}$ D. Zhu ${ }^{3}$ ahd D. A. Reis ${ }^{1,2,11 \star}$

Abstract

${ }^{1}$ Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA, ${ }^{2}$ Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA, ${ }^{3}$ Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA, ${ }^{4}$ Tyndall National Institute and Department of Physics, University College, Cork, Ireland, ${ }^{5}$ Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK, ${ }^{6}$ Physics Department, ETH Zurich, 8093 Zurich, Switzerland, ${ }^{7}$ Department of Physics, Lund University, S-22100 Lund, Sweden, ${ }^{8}$ Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA, ${ }^{9}$ Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47048, Duisburg, Germany, ${ }^{10}$ Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA, ${ }^{11}$ Departments of Photon Science and Applied Physics, Stanford University, Stanford, California 94305, USA. *e-mail: mtrigo@slac.stanford.edu; dreis@slac.stanford.edu

 Sciences and Engineering Division. Portions of this research were carried out at the Linac Coherent Light Source (LCLS) an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University.
Acknowledgements (PbTe expt.)

PU美SE

Mason P. Jiang
Crystal Bray Jesse Clark Ian Fisher Paula Giraldo

Tom Henighan
Mike Kozina
Aaron Lindenberg
Mariano Trigo
Peter Zalden
David A. Reis

Matthieu Chollet
James M. Glownia
Matthias Hoffmann
Diling Zhu

Olivier Delaire Andrew May Brian C. Sales

Roberto Merlin

the University of Tokyo

ETyndall
Stephen Fahy Eamonn Murray Ivana Savic

Selected References (in no particular order)

M. Cardona and Peter Yu, Fundamentals of Semiconductors, Springer 2010
R. Merlin, Generating Coherent THz Phonons with Light Pulses, Solid-State Comm. 102, 1997
D. A. Reis and A. M. Lindenberg. Ultrafast x-ray scattering in solids. In M. Cardona and R. Merlin, editors, Light Scattering in Solids IX, Springer, 2007.
M. Krisch and F. Sette. Inelastic x-ray scattering from phonons. In M. Cardona and R. Merlin, editors, Light Scattering in Solid IX, Springer 2007.
R. Santra Concepts in x-ray physics , J. Phys. B 42, 0230012009
R. W. James, the Optical Principals of X-ray Diffraction, Bell and Sons, 1962
M. Trigo, et al., Fourier-transform inelastic x-ray scattering from time- and momentum-dependent phonon-phonon correlations. Nature Physics, 9,790 2013.
L. van Hove, Correlations in Space and Time and Born Approximation Scattering in System of Interacting Particles, Phys. Rev. 95, 1954
R. Loudon and P. Knight, Squeezed Light, J. of Mod. Optics, 34, 1987
R. Loudon, The Raman Effect in Crystals, Advances in Physics, 13, 1964

