Time and Length Scales in X-Ray Science

Joachim Stöhr SLAC/Stanford

http://www-ssrl.slac.stanford.edu/stohr

Zug, July 2014

Overview

Production and Characteristics of X-rays

- > Electrons, Fields, Radiation, Photons
- Radiation spectra: synchrotron & X-FEL
- > Brightness/coherence: diffraction and transform limit

X-Ray Interactions – Length and Time Scales

- First and second order x-ray processes
- Polarization effects "dichroism"
- Importance of *E* versus *B* fields

Part 1:

Production and Characteristics of X-rays

Categories of Lightsources

Synchrotron & X-FEL sources are based on electron accelerators

J. Ullrich, A. Rudenko, R. Moshammer Ann. Rev. Phys. Chem. 63, 635 (2012)

Energy of electron beam is contained in its fields

Fields in frame of charge

Fields in frame of observer

For moving charge, energy in E and B fields is the same

Energy:
$$\mathcal{U} = \frac{V}{2} \left(\epsilon_0 |\mathbf{E}|^2 + \frac{1}{\mu_0} |\mathbf{B}|^2 \right) = \epsilon_0 V |\mathbf{E}|^2$$

To an observer the approaching Coulomb fields look like an EM wave

Coulomb or velocity fields

The Weizsäcker-Williams theory

converts the energy in the field pulse E(t), B(t) through Fourier transformation into the "virtual photon" spectrum $E(\omega)$, $B(\omega)$

- > The virtual photon cloud is attached to the charge
- All interactions are through the virtual photons

The Weizsäcker-Williams virtual photon spectrum

30GeV, 1ps electron bunch with 10¹⁰ electrons

"Interactions" can turn Virtual Photons into real photons

Examples of conversions of VPs into real photons:

- "Bremsstrahlung": scatt. of VPs on the nuclear Coulomb field
- "transition radiation": scatt. of VPs on electric boundary field
- "Annihilation photons": scatt. of electron on positron VPs
- "synchrotron radiation": scatt. of VPs on a magnetic field

Synchrotron Radiation

magnetic field H accelerates electrons: converts VPs to "radiation"

Field intensity patterns

Synchrotron radiation "spectrum"

all electrons in bunch radiate independently

Single electron x-ray pulse from **bending magnet**

Single electron x-ray pulse from undulator

Fourier transform of pulse = synchrotron radiation spectrum

X-FEL spectrum

Short pulse X-FEL spectrum

electrons in bunch are arranged in sheets and radiate coherently in phase

Summary of x-ray source spectra

Calculated X-FEL spectrum

Source brightness (or brilliance)

Importance of a "diffraction limited source" or laterally coherent source

X-FEL x-rays are diffraction limited allow single shot diffraction imaging

Storage ring: undulator

X-ray Free Electron Laser

Importance of a "transform limited" source or longitudinally coherent source

Stimulated resonant process in equilibrium

(a) Two-photon picture (b) Single EM-wave picture

More than one photon at-a-time = strong classical field

offers complete "up-down" control

From NMR to X-Ray Lasers: controlling transitions with coherent EM radiation

Number of simultaneous coherent x-rays: storage ring versus XFEL

"simultaneous" is defined by atomic decay clock ~ 1 fs

X-Ray laser: 10⁹ phot./eV/fs

| Solution | Text |

Part 2:

X-Ray Interactions – Length and Time Scales

Basic x-ray interaction processes

First Order Processes

First Order X-Ray Scattering: "Thomson Scattering"

Scattering by charge

all Z atomic electrons "wiggle"

scattered intensity: 1

Scattering by spin

"Bragg diffraction" = interference of Thomson scattered fields

The four basic Resonant X-Ray Processes

First order: "Fermi's golden rule"

Second order: "Kramers-Heisenberg"

Length and time scales of (soft) x-rays

Photon energy dependence of cross sections

Resonant processes give orders of magnitude signal enhancements

Measurement of X-Ray Processes

Strong resonances near absorption thresholds (edges)

Element specificity, Chemical specificity, Valence properties

Absorption spectra reveal local bonds around Carbon atoms

"Linear dichroism" reveals bond orientation

Benzene molecular orbitals

Circular dichroism is spin dependent

- Circularly polarized photons have angular momentum
- Photon "spin" interacts with sample spin

X-ray Magnetic Circular Dichroism

Spectroscopy: (d) Fe metal L- edges 700 720 740 Photon Energy (eV)

Microscopy:

Schütz et al., Phys. Rev. Lett. 58, 737 (1987)

Stöhr et al., Science 259, 658 (1993)

Dichroism effect is large at atom-specific resonances

The size and speed of things: from "structure" to "function" --

Light revolutions

Interaction Strength of Electromagnetic Fields with Matter

