

CNAO team

- S. Alpegiani, G. Baccaglioni, G. Balbinot, R. Basso, G. Bazzano, D. Bianculli, J. • Bosser, E. Bressi, G. Burato, G. Butella, M. Caldara, L. Casalegno, E. Chiesa, V. Chimenti, G. Ciavola, G. De Filippi, R. Diegoli, M. Donetti, L. Falbo, D. Fiocchi, L. Frosini, M.A. Garella, F. Generani, F. Gerardi, S. Gioia, L. Grilli, L. Lanzavecchia, R. Monferrato, V. Mutti, M. Necchi, M. Nodari, A. Parravicini, M. Pelliccioni, M. Pezzetta, C. Priano, G. Primadei, M. Pullia, S. Rossi, S. Savazzi, M. Scotti, S. Sironi, A. Smaldore, M. Spairani, S. Toncelli, E. Vacchieri, G. Venchi, S. Vitulli, C. Viviani, **CNAO-Pavia**
- C. Biscari, L. Celona, R. Cirio, A. Clozza, C. De Martinis, P. Fabbricatore, G. Franzini, • S. Gammino, S. Giordanengo, F. Marchetto, L. Pellegrino, A. Pisent, R. Ricci, C. Roncolato, C. Sanelli, M. Serio, F. Sgamma, A. Stella, INFN Welis
- M.E. Angoletta, J. Borburgh, M. Buzio, R. Chritin, D. Cornuet, J. Dutour, T. Fowler, K. Metzmacher, L. Sermeus, CERN G. Clemente, C.M. Kleffner, M. Maier, A. Reiter, B. Schlitt, W. Vinzenz, H. Vormann, \bullet
- GSI

Hadrontherapy in the world

D = distance between ionizations

Energy deposition in matter

Low LET<20 keV/ μ mD > DNA diameterHigh LET> 50 keV/ μ mD < DNA diameter</td>Very High LET>1000 keV/ μ mD < DNA diameter + excess Energy</td>

Why carbon ions?

Carbon ions have higher *LET* than protons Qualitatively the energy deposited by carbon ions is more efficient, in terms of cell destruction, than the energy deposited by protons. The higher efficiency in killing cells is expressed by the *relative biological effectiveness (RBE), which* is the ratio between the photon and the ion doses which are necessary for producing the same biological effect. <u>Carbon RBE > 3 in the Bragg peak region</u>

Ne 3 Survival surv_xclgd RBE 臣 10^{3} 10^{2} 10° 10 10-1 10 LET (KeV/µm)

>= 1 in the entry channel.

The survival curve for the target cells for late injury is "curvier" than that for acute effects When planning the treatment, RBE must be considered : Concept of "biological dose":

physical dose distribution necessary for obtaining a flat biological dose

Other parameters: cell type, blood perfusion, oxigenation Hipoxic tumours resistant to photons and protons Carbons drawback : dose deposition after Bragg peak -Protons drawback : lateral diffraction

CLINICAL comparison between different methods Statistics

"Few Carbon treated patients -> Experimental phase

Example :

Tracking patients and exhanging data within different institutions

Morbiditi	ies afte	r Carbo	n lon	Thera	py (20	00.4~20	08.2)	
				Grad	е			
-	No.	0	1	2	3	4	5	
Skin								
Early	427	1	385	38	3	0	0	
Late	420	4	389	20	6	1	0	
GI tract								
Early	380	375	5	0	0	0	0	
Late	374	373	1	0	0	0	0	
Lung								
Early	33	33	0	0	0	0	0	
Late	33	31	2	0	0	0	0	
Edema	18	14	ES	FIMATING S	SEVERITY	GRADE		
Spinal cord	39	38	For esti	abnormalities mate grade of	s NOT foun severity:	d elsewhere in th	ne Toxicity Table	es use the scale below to
64GyE : 29	, 67.2Gy	E:53, 70	GR GR	ADE 1 ADE 2		Mild (< 48 hours); no : Moderate activity - some a	Transient or medical intervent Mild to assistance may b	mild discomfort ion/therapy required moderate limitation in e needed; no or minima
			GR	ADE 3		medical intervent Severe	ion/therapy requi Marked lin	red hitation in activity, some

GRADE 4

SevereMarked limitation in activity, someassistance usually required; medical intervention/therapyrequired, hospitalizations possibleLife-threateningExtreme

significant assistance required; significant medical intervention/therapy required, hospitalization or hospice care probable "Conclusion" Carbon ion radiotherapy is a safe and effective local treatment for inoperable bone and soft tissue sarcoma without acceptable morbidity.

MIRS

New Treatment Facility Project at HIMAC

> Koji Noda Research Center for Charged Particle Therapy National Institute of Radiological Sciences 2nd NIRS-CNAO Sympon, Pavia, Italy, 21st March, 2010

CNAO in Pavia

40km from Milan Easily reachable from all Italy and from most European airports

CATANA: in operation since 2002 150 patients treated

Pavia

CNAO Foundation

In 2001 CNAO is created as no profit organisation (Foundation) created with the financial law 2001 to build the national center for hadrontherapy designed by TERA Foundation

At the end of 2003 CNAO acquires the TERA project and hires the design group

Collaborations NATIONAL: INFN, Univ of Pavia, Milano, Torino, Politecnico of Milano, Town of Pavia INTERNATIONAL: CERN, GSI, LPSC, NIRS

The Phases of CNAO

Phase 1: construction

Phase 2: experimentation

Phase 3: start-up

CNAO SCHEDULE

today

year	05		06		07		08		09		10		11	12
CONSTRUCTION														
	Nev	v site	e: no	exist	ting i	nfras	struc	tures						
INSTALLATION														
~ %					90	85	80	70	70	40	20	10		
SYSTEM TESTS														
~ %						10	10	20	20	50	75	10		
BEAM COMMISSIONING						←		njec	tor		→			
~ %						5	10	10	10	15	5	80		
EXPERIMENTAL PHASE														

CNAO Site

Medical and Administrative buildings

Accelerator and treatment rooms

Synchrotron hall today

Vertical dipole installation 05-09

Some examples of the most recent beam diagnostic installations

H3-011B-QPM Qualification Monitor Installation

HEBT

S7-011A-PUV

Tune front-end

Synchrotron

Z2-028A-SFH Long Fibers SFH

Treatment room

INJECTOR commissioning strategy

INJECTOR commissioning strategy

INJECTOR commissioning strategy

400 keV/u – 7 MeV/u

ECR Ion Sources

Both can deliver H3+, C4+ and other species 14.5GHz

• Double wall, water cooled plasma chamber with 7 mm diameter aperture for beam extraction.

Permanent magnets system providing the axialand radial confinement (axial field from 0.4 to 1.2 T, radial field i1.1 T)
A copper made "magic cube" for the microwave njection system which consists of a waveguide to coaxial converter with a tuner to minimize the reflected power.
An RF window for the junction between the magic cube at high vacuum and the waveguide at atmospheric pressure coming from the generator.

A gas injection system.

A DC bias system to add electrons to the plasma and decrease the plasma potential.
An RF generator of about 400 W at 14.5 GHz (the effective power used in operation is below 300W).

• Flexible frequency variable travelling wave tubes amplifiers (TWTA).

Built by Pantecknic on INFN-LNS Design

FREQUENCY TUNING EFFECT

Increase of the extracted current by 30-50 %

Slight variations of the exciting frequency produce strong changes in the electric field distribution over the resonance surface - S. Gammino

Spectra of source

Measurement performed with a fixed gap of slits (2 mm).

Sources currents and emittances

 C^{4+} , 230 μ A (design = 200 μ A)

H₃⁺, 1.4mA (design =800 μA)

Emittance measured after spectrometer

Stability tests for C4+

LEBT commissioning

Diagnostic tanks containing slits, wirescanners, faraday cups Along the line + TB0

Emittance and Twiss Parameters measurement •With tank diagnostics •With Quad scans •Model Agreement better than ± 10%

'Round beam' in TB0 with H3+ from SO1

Transmission 92 % - final current 1150 μ A (design 600 uA)

RFQ – Gsi and CNAO

Four-rod like type Energy range = 8 – 400 keV/u Electrode length = 1.35 m, Electrode voltage = 70 kV RF power loss (pulse): about 100 kW Low duty cycle: around 0.1%

TB2 diagnostic tank **Measurements:**

- Current
- Profiles
- Energy
- Emittance

Phase space painting: calibration for RFQ injection optimisation

RFQ acceptance measurements (8 keV/u)

Horizontal plane

Vertical plane

Blue ellipse: measured in TB0 (rms emittance full beam) Cyan ellipse: nominal RFQ acceptance Black ellipse fits measured points up to the half of maximum transmission value

RFQ commissioning: typical measurements

Emittances in TB2 (C4+)

RFQ commissioning summary

			transmission	maximum current	nominal current
full beam	${H_{3}}^{+}$	8 keV/u	57%	450 uA	300 uA
probe beam	H_3^+	8 keV/u	70%	50 uA	
probe beam	H_3^{+}	8.5 keV/u	60%	45 uA	
full beam	C^{4+}	8 keV/u	63%	73 uA	100 uA

Full beam transmission slightly lower than probe beam transmission:

- good transverse matching
- transmission limited by longitudinal leak

LINAC – GSI and CNAO

Operating frequency Beam pulse length RF pulse length Ion mass-to-charge ratio 216.816 MHz

- \leq 300 µs @ PRF \leq 5 Hz
- \leq 500 µs @ PRF \leq 10 Hz

io $A/q \le 3$

3 Integrated magnetic tr 56 Accelerating gaps	iplet lenses				
Energy range	0.4 - 7 MeV/u				
Tank length	3.77 m				
Inner tank height	0.34 m				
Inner tank width	0.26 m				
Drift tube aperture diam.	12 – 16 mm				
RF power loss (pulse)	≈1 MW				
Averaged eff. volt. gain	5.3 MV/m				
Stripping foils after Linac acceleration

LINAC commissioning

C6+ beam energy dependence on Linac parameters

Ion	$\epsilon_{4 \times rms, 90\%}$ / π mm mrad		Emittance Growth	
Species	horizontal	vertical	hor.	vert.
C ⁶⁺	5.2	4.1	3 %	3 %
protons	6.4	6.0	7 %	36 %

lon Species	LEBT End	Downstream LINAC	LEBT/LINAC max.transmission	Downstream Stripper foil	
C4+/ C6+	≈ 170 µA	≈ 82 µA	48 %	≈ 115 µA	
	1.0 - 1.1 mA	≈ 400 µA	39 %	≈ 1.2 mA	Goal: 120 µA
H ₃ */ p	710 µA	307 µA	46 %	≈ 900 µA	Goal: 600 µA

... about two times higher C6+ beam currents and roughly four times higher proton beam currents were achieved behind the CNAO linac as compared to HIT.

Dispersion bump

Debuncher to minimize the injected beam momentum spread

Quadrupoles for matching in non dispersive zone

Carbon beam > 90 % transmission in MEBT

0

y(m)

5

x 10⁻³

-0.5

-5

Emittance measurements with Quad Scans used for beam optimisation at injection

TVScreen in synchrotron

Different quad sets

Beam (p) at the end of the MEBT

TV screen T60 \rightarrow end of the MEBT

Transmission along MEBT > 90% both species

TV60 Images of Proton beam: 600 μA

Images of Carbon beam: 90 μ A

Synchrotron

Synchrotron optical functions

Extraction Electrostatic septum

С	78 m
Qx	1.6666 - 1.7
Qy	1.72

2 Superperiods
2 Closed dispersion bumps
1 Dipole Family
3 Quadrupole Families
3 Sextupole Families

RF cavity

MAIN CHARACTERISTICS
Vitrovac(Co-Fe alloy) cavity
Tetrode pushpull amplifier
Frequency Range: 0.4 - 3 MHz (tested up to now but potentially extensible)

very low current to polarize vitrovac up to 3 MHz (10A)

Peak to Peak Gap Voltage: 40- 8000 V

Injection in time

An animated view of injected beam emittance (courtesy of R. Steerenberg)

Multiturn injection with injection bumpers, creating the emittance for slow extraction process

Machine cycle

2-3 sec

B-TRAIN

High precision, Analog/Digital measurement system for dipole magnetic field.

RF, Dump Bumpers and Diagnostics systems use the real-time B-field measurements to track beam energy.

A feedback correction signal for the dipoles PS compensates for the transient response of the magnetic field.

The field is obtained by digitizing the voltage induced on a pick-up coil inserted in the gap of the dipole through a 18 bit, 1.25 Msamples/s ADC and integrating it by numerical methods

16000 14000 12000 10000 Gauss 8000 6000 4000 2000 -2000 2000 3000 4000 5000 600 7000 1000 msec

Measurements of typical magnetic cycles have confirmed that B-Train matches specifications

First turn in the synchrotron (end 2009)

TV screen T45 \rightarrow first turn

Few synchrotron steerers were turned on

Slow extraction on third order resonance Use of a betatron core and resonance sextupole + chopping system on the extraction line for rapid switch on-off

RF-knockout method foreseen as alternative method in the future

HEBT

Active scanning

Precise medical imaging

 intensity-modulated particle therapy

• treatment of arbitrary tumour shapes.

To treat moving organs with active scanning, synchronization with breathing, repainting, tumour tracking and following, and active energy compensation methods are under development worldwide

Beam delivery – scanning control

1 Integral chamber:

- Beam Intensity measure every 1 μs
- 2 Strip chambers (X and Y):
- Beam position measure every 100 μs, with 100 μm of precision

- **1 Integral chamber:**
- Beam Intensity measure every 1µs
- **1 Pixel chamber:**
- Beam position and dimension measure every 100 $\mu s/1$ ms, with 200 μm of precision

Typical parameters for treatments

Spill characteristics Energy range : 60-250 (p) 120-430 (C) Field size : 200 x 200 mm x mm Particles per spill : 4 10¹⁰ (p) 10⁹ (C) Dose uniformity : 2-3% Beam positioning : 0.1 mm Typical treatment duration : 30 min Typical dose delivering : 2-3 min Typical Spill length : 1 sec Spill length for voxel . 5-10 msec

A random position error of 0.1 σ in the position of the Gaussians yields a dose error > ±3%.

Medical tools under test in the treatment rooms

Future upgrades

ULICE

Union of light-ion centres in Europe (ULICE), coordinated by CNAO

4-year project with 20 European organisations, and 2 European industrial partners for coordinating research and access to HT centers.

Full exploitation of all different resources, unrestricted spread of information and improvement of existing and upcoming facilities .

* JRA - development of instruments and protocols: new **gantry design**, improvement of **four-dimensional particle beam delivery**, adaptive treatment planning, mechanisms for patient selection to the whole European Community and database development for specific tumours which can best be treated using carbon ion.

* Networking - increasing cooperation between facilities and research communities wanting to work with the research infrastructure. Outputs will be (among others): a report on recommendations for strategically optimal locations for future RIs throughout Europe, training to new users.

* Transnational access: 2-step approach, using a combination of pre-defined (within ULICE) clinical trial programmes to allow researchers with patients to visit the facility, and radiobiological and physics experiments to take place.

Carbon ion gantry

Only one gantry worldwide: L = 25 m x ϕ = 13 m, 600 t

Fixed Isocenter 360° rotation Parallel scanning 200 mm x 200 mm 140 t magnets 120 t shielding-counterweight 600 t total rotating mass

U. Weinrich, GSI

It has everything, but it is

Very large, very heavy, very expensive

Aspects being considered in new Gantry design

Scanning Scanning magnets position 360° vs 180° Field patching Fixed or mobile isocenter Multi-room system Divergent scanning Superconducting magnets FFAG gantry

MISHA: Multicharged Ion Source for Hadrontherapy 2.5 generation

Sources for Hadrontherapy; Need of reliability, stability, reproducibility easy optimisation and maintanance

Hybrid ECR:

Permanent magnet sextupole SC solenoids (cryocooler) Rf Frequency : 18 GHz + 71.6 GHz Max rf power : 500W + 500 W Rf voltage : 50 kV max, 40 kV ope Total dimensions: 0.6 m

Higher currents Lower emittances Optimised for multispecies

Ion trajectories (KOBRA simulations)

G. Ciavola et al.
fondazione CNAQ

PROGETTO DI SPERIMENTAZIONE CLINICA

A CURA DI:

Erminio Borloni – Presidente Roberto Orecchia – Direttore Scientifico Sandro Rossi – Segretario Generale e Direttore Tecnico

IL CENTRO NAZIONALE DI ADROTERAPIA ONCOLOGICA Strada Privata Campeggi - 27100 Pavia

Sedi: Via Caminadella, 16 - 20123 Milano Iscrizione al Registro delle Persone Giuridiche della Prefettura di Milano n. 192 P IVA n. 03491780965 Codice Fiscale n. 97301200156

Presented to:Ministry of HealthRegion Lombardy

Main Tasks:

- Dosimetry characterisation
- Radiobiology characterisation
- Patient treatments

Programme of Clinical Experimentation

Sala 1 Fascio Orizzontale	Dosimetria e radiobiologia		Trattamenti dei Pazienti con Protoni		Trattamenti dei Pazienti con Ioni Carbonio
Sala 3 Fascio Orizzontale		Dosimetria e radiobiologia		Trattamenti dei pazienti con Ioni Carbonio	
Sala 2 Fascio Orizzontale e Verticale			Dosimetria e radiobiologia	Trattamenti dei Pazienti con Protoni	Trattamenti dei Pazienti con Ioni Carbonio

Duration: 18 months

Total number of patients: 230 (80 protons and 150 carbon ions)

Cost evaluation in view of hadrontherapy fees definition

The running phase

The treatments will be performed in the frame of the <u>National</u> <u>Health System</u>

A network will connect CNAO to the national health system

The network will guarantee the efficient recruitment of the patients on a national basis

During routine operation at CNAO, in three treatment rooms, 20'000 sessions per year will be delivered, corresponding to a maximum number of about <u>3000/3500 patients per year</u>

Conclusions

The Italian carbon and proton therapy project will come into operation in the next future:

CNAO construction and installation completed

CNAO commissioning on going
Experimental phase since 2011
Running phase since 2012