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Qutline

»* Coherent x-ray imaging and detector need.
* Original specifications.

* Brief overview of PAD design.

» Single photon measurements.

* Thoughts on low flux measurement with integrating
PAD.

* Measurements and data reduction with Cornell's single

module detector.
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CXI Instrument

- Combination of extremely high-flux and lQw-flux.
- High-flux makes integrating detector necessary.
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- Combination of extremely high-flux and lQw-flux.

- High-flux makes integrating detector necessary.

- Low-flux data only meaningful if many fraimes
added.

- Low-flux data defined as ) §

<l photon/pixel/frame_\ y
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Cornell University

CXI Instrument

- Combination of extremely high-flux and lQw-flux.
- High-flux makes integrating detector necessary.

- Low-flux data only meaningful if many fraimes
added.

- Low-flux data defined as ) ¢

Classification

Lab of Atomic and Solid State Physics
Hugh Philipp, iWoRID 13




Cornell University

CXI Instrument

- Combination of extremely high-flux and lQw-flux.
- High-flux makes integrating detector necessary.

- Low-flux data only meaningful if many fraimes
added.

- Low-flux data defined as
<< 1 photon/pixel/frame.

How do you deal with this when your detector noise is (say) 1/7 photon?
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* Originial Specs Given for Detector

Parameter Requirement

Energy 4-8 keV

Range

Well-depth/pixel 10°

Readout frame rate 120 Hz

Signal/Noise >3 for single 8 keV photon
DQE > 90% at 8 keV

Pixel size 100-200 pm

Detector area > 500x500 pixels

Lab of Atomic and Solid State Physics
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Cornell's LCLS PAD

: reset
Rev. Bias i N : ................................................
X-rays\\ B~ | | B ADC Clock ~ Out
Bump Bond In 3 HH Counter/
- e . shift register
Tl P Vref—4
charge Front-end : Analog-to-Digital Conversion
injection : — :
test circuit =00 Meeesresssessesssssrasess -

Sample and Hold Stage

Singlg ASIC: 192x185 pixels 1 quadrant of SLAC's detector based
ASIC: TSMC 0.25 micron. off Cornell's ASIC.

. . . Picture from:
Lab of Atomic and Solid State PhyS|CS http://www.amarog.com/ryan/2010/04/02/pictures-of-cxi-detector
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Specs for Detector

Parameter Requirement

Energy 4-8 keV

Range

Wel-depth/pixel 10° > 2500
Readout frame rate 120 Hz

Signal/Noise >3 for single 8 keV photon b 7

DQE > 90% at 8 keV

Pixel size 100-200 pim 110x110 um
Detector area > 500x500 pixels 1500x1500
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Single Module

Lab of Atomic and Solid State Physics
Hugh Philipp, iWoRID 13



Cornell University

/A _ _ I A A _ _h b

3[:"] T T T T T T T T Sﬂ{:] T T T T T T T

250 | 1250

200 | 1200

150 1150
100 1100

50 150

0123456 7 88
300 P—— 200

ol |.

250

200

150} 1100

100 |
S
50|

0
6 1 2 3 4 6 6 7 01234567 8 8
x-axis Signal Scaled to number of 8-keV Photons

Lab of Atomic and Solia state rnysics ————
Hugh Philipp, iWoRID 13



Cornell University

Tested in Experiments
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In-situ CNT forest growth.
Collaboration with
John Hart group,

Lab of Atomic and Solid State Physics University of Michigan.
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Adding Many Frames

20 40 &0 t=11] 100 120 140 160 120 20 410 [211] 20 100 120 140 160 120

Single Frames Added, thresholded frames
Up to ~350 frames

Lab of Atomic and Solid State Physics Have external movie.
Hugh Philipp, iWoRID 13



3000 frames, low flux data

Lab of Atomic and Solid State Physics Have video file.
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Whole Array Peak Histogram

Photon Peak Histogram
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Whole Array Peak Histogram
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Note:

1) At 10 s, integrated dark current is
. =, 290,000 e-.

2)Dark current noise becomes dominant.

3) Detector at -30 C.

4) For calibration, this is a good thing to
Keep in mind.

5) If running at 36 C, dark current noise
dominant at 5ms.

[T T

A/D Value
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Adding many frames

» Basic problems

* 1) How well do you know the background.

. -
Under best circumstances you have: o, = pix

| N

back frames

* S0, if you want to have single photon sensitivity:

N
N Sigframes * O pack= \/

O

Sig frames

DX <1

back frames

;

2
sigframes

)
) (hand wave) N > Of)ixN

back frames
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Adding many frames

» Basic problems

1) How well do you know the background.
2 2
> Nback frames>0pix Nsig frames (Very Optlmlstlc)
* Are there any small scale drifts, frame to frame

variations?

Lab of Atomic and Solid State Physics
Hugh Philipp, iWoRID 13



Zf Cornell University

Adding many frames

» Basic problems

1) How well do you know the background.

2 2
> Nback frames >Opix Nsig frames (at Very |east)

* Are there any small scale drifts, frame to frame
variations?

* Errors in background add when adding frames.
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Adding many frames

» Basic problems

1) How well do you know the background.

2 2
Y Nback frames >Gpix Nsig frames (at Very |eaSt)

* Are there any small scale drifts, frame to frame
variations?

* Errors in background add when adding frames.

* Applying a threshold allows you to avoid such
stringent requirements.
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Thresholding

« Two distributions: 0 and 1 photons.

* If frequency (photon/pixel/frame) for 1
photon is A.

» Question — for some A, at what level does
the threshold need fO 'noise' is low compared
to f1 'signal’.

0 photons 1 photon

Lab of Atomic and Solid State Physics

Neglecting charge sharing
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Thresholding

« Two distributions: 0 and 1 photons.

* If frequency (photon/pixel/frame) for 1
photon is A.

* Question — for an A, at what level does the
1 | threshold need fO 'noise' is low compared to

VAN | f1'signal'.

:I:I . - - @ -

5 z 1 : ; For half signal from each:

o0 o0
0 photons 1 photon fthr foz fthr fl
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Thresholding

« Two distributions: 0 and 1 photons.

| < If frequency (photon/pixel/frame) for 1
photon is A.

» Question — for an A, at what level does the

1 | threshold need f ‘noise’is low compared to f,

AN | 'signal'.

5 z 1 : ; For half signal from each:

o0 o0
0 photons 1 photon fthr foz fthr fl

For A= 1/1000, and o = 1/7 photon, at threshold of 0.44 photons,
half the signal if from f_

Lab of Atomic and Solid State Physics

Neglecting charge sharing
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Varying Threshold
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(Azimuthal integration around detector)
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Varying Threshold
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Varying Threshold
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Varying Threshold
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Varying Threshold
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Varying Threshold
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Varying Threshold
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Varying Threshold
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Varying Threshold
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Varying Threshold
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Varying Threshold
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Varying Threshold
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Varying Threshold
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Varying Threshold
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Varying Threshold
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Varying Threshold
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Varying Threshold
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Charge Sharing

25 micron spot scan

One Advantage of integrating
detectors:

> Summed charge proportional to
absorbed energy. Don't worry about
assigning photons to pixels.

Intensity (ADU)

> But thresholds cause problems.

> |In fact, we see this.

1 1 1 L 1 1 1 1 L 1
0 100 200 300 400 500 600 700 800 900 1000 1100
Position (microns)
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Nearest Neighbors

* Low flux data:
Threshold _~ 0.6 photon

!

Signal reduction of 8% - just applied
to central pixel.

But
Threshold allowing accumulation in

nearest neighbors recovers 'most’
Signal.

Lab of Atomic and Solid State Physics
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Nearest Neighbors

* Low flux data:
Threshold _~ 0.6 photon

!

Signal reduction of 8% - just applied
to central pixel.

But
Threshold allowing accumulation in

nearest neighbors recovers 'most’
Signal.

Method has problems (e.g. High-flux next to low flux)
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Is this the ‘real’ Diffraction Pattern?

10 s data acquisition
azimuthal integration
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Is this the ‘real’ Diffraction Pattern?

10 s data acquisition
azimuthal integration
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More than an order of magnitude less
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This ring less than ' i i T
107 photons/pixel/frame
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Some Important Points

* How you reduce the detector data to recover
meaningful data is not always straight forward.

» Giving users mountains (TBs) without direction about
how to look at it = frustration, duplicated effort.

» Full and diligent calibration of detectors is needed
before users spend time taking data.

Lab of Atomic and Solid State Physics
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Conclusions

* For integrating detectors, thresholding (or something
like it) is required for extremely low photon incidence.

» Cornell's pixel array detector (upon which the LCLS
CXIl detector is based) has demonstrated the
capability of faithfully extracting diffractions patterns
from extremely low flux (photons/pixel/frame).

Lab of Atomic and Solid State Physics
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The first set of user experiments with the Linac Coherent Light Source's newestinstrument is
underway, and abhout 40 researchers are working wery long hours this week to decipher the
structures of proteins involved in photosynthesis, parasitic disease and other important life
[rocesses.

The results won't be known for months, after extensive analysis of the data. But nearthe end of the
second 12-hour shift on Tuesday morning, scientists gathered in front of a bank of computer
monitars in the CXl control room were beaming and pointing at the screens, to a chorus of "oohs”
and "ahhs."

"fou see this protein, all these rings here?" Petra Fromme of Arizona State University asked me, The research team inthe CX| contral raom.
pointing to a printed image of what looked like tiny, bright stars arranged in circular patterns (Photo by Brad Flummer.)
against a dark sky. "What's really nice is that each spotis so very fine. The diffraction pattern is so

much cleaner'than the ones obtained with traditional structural analysis. What that implies, at a preliminary glance, is that the team may
have captured the structure of a photosynthetic protein complexin very fine, crisp detail, approaching atomic resolution.

The LCLS is the woarld's most powerful X-ray free electron laser. Its strobe-light pulses—120 of them per second—could burn through steel,

Lab of Atomic and Solid State Physics
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