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OutlineOutline

Coherent x-ray imaging and detector need.

Original specifications.

Brief overview of PAD design.

Single photon measurements.

Thoughts on low flux measurement with integrating 
PAD.

Measurements and data reduction with Cornell's single 
module detector.
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CXI InstrumentCXI Instrument

- Combination of extremely high-flux and low-flux.

- High-flux makes integrating detector necessary.

- Low-flux data only meaningful if many frames 
added.

- Low-flux data defined as 
<< 1 photon/pixel/frame.

How do you deal with this when your detector noise is (say) 1/7 photon?
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Originial Specs Given for DetectorOriginial Specs Given for Detector
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Cornell's LCLS PADCornell's LCLS PAD

Basic pixel design.

1 quadrant of SLAC's detector based 
off Cornell's ASIC.

Picture from:
http://www.amaroq.com/ryan/2010/04/02/pictures-of-cxi-detector

Single ASIC: 192x185 pixels
ASIC: TSMC 0.25 micron.
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Specs for DetectorSpecs for Detector

7

1500x1500

110x110 um

~2500
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Single ModuleSingle Module
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Tested in ExperimentsTested in Experiments

In-situ CNT forest growth.
Collaboration with 
John Hart group,
University of Michigan.

External movie
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Adding Many FramesAdding Many Frames

Single Frames Added, thresholded frames
Up to ~350 frames

Have external movie.
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Adding Many FramesAdding Many Frames

3000 frames, low flux data

Have video file.
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No gain correction applied.

8 keV photons
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Note: 

1) At 10 s, integrated dark current is
290,000 e-.

2)Dark current noise becomes dominant.

3) Detector at -30 C.

4) For calibration, this is a good thing to
Keep in mind.

5) If running at 36 C, dark current noise
dominant at 5ms.

8 keV photons
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Adding many framesAdding many frames

Basic problems

1) How well do you know the background.

Under best circumstances you have:

So, if you want to have single photon sensitivity:

σback=
σ pix

√ N back frames

N Sigframes∗σback=
N Sig framesσ pix

√N back frames

≪1

N back frames≫σ pix
2 N sigframes

2(hand wave)
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Adding many framesAdding many frames

Basic problems

1) How well do you know the background.

                                       (very optimistic)

Are there any small scale drifts, frame to frame 
variations?

N back frames>σ pix
2 N sig frames

2
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Adding many framesAdding many frames

Basic problems

1) How well do you know the background.

                                          (at very least)

Are there any small scale drifts, frame to frame 
variations?

Errors in background add when adding frames.

Applying a threshold allows you to avoid such 
stringent requirements.  

N back frames>σ pix
2 N sig frames

2
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ThresholdingThresholding

0 photons 1 photon

Neglecting charge sharing

●  Two distributions:  0 and 1 photons.

●  If frequency (photon/pixel/frame)  for 1 
photon is A.

● Question – for some A, at what level does 
the threshold need f0 'noise' is low compared 
to f1 'signal'.

f
1f

0
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ThresholdingThresholding

0 photons 1 photon

Neglecting charge sharing

●  Two distributions:  0 and 1 photons.

●  If frequency (photon/pixel/frame)  for 1 
photon is A.

● Question – for an A, at what level does the 
threshold need f0 'noise' is low compared to 
f1 'signal'.

f
1

f
0

∫thr

∞

f 0=∫thr

∞

f 1

For half signal from each:
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ThresholdingThresholding

0 photons 1 photon

Neglecting charge sharing

●  Two distributions:  0 and 1 photons.

●  If frequency (photon/pixel/frame)  for 1 
photon is A.

● Question – for an A, at what level does the 
threshold need f

0
 'noise' is low compared to f

1
 

'signal'.

f
1

f
0

∫thr

∞

f 0=∫thr

∞

f 1

For half signal from each:

For  A = 1/1000, and σ = 1/7 photon, at threshold of 0.44 photons,
half the signal if from f

0
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Varying ThresholdVarying Threshold

(Azimuthal integration around detector)

~ 20 ADU/x-ray

1000 frame sum

Radial Distance
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Charge SharingCharge Sharing

One Advantage of integrating 
detectors:

➔ Summed charge proportional to 
absorbed energy.  Don't worry about 
assigning photons to pixels.

➔ But thresholds cause problems.

➔ In fact, we see this. 



 

Lab of Atomic and Solid State Physics

Hugh Philipp, iWoRID 13

Nearest NeighborsNearest Neighbors

Low flux data:  

Threshold  ~ 0.6 photon

 Signal reduction of 8% - just applied
to central pixel.

But

Threshold allowing accumulation in
nearest neighbors recovers 'most' 
Signal.
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Nearest NeighborsNearest Neighbors

Low flux data:  

Threshold  ~ 0.6 photon

 Signal reduction of 8% - just applied
to central pixel.

But

Threshold allowing accumulation in
nearest neighbors recovers 'most' 
Signal.

Method has problems (e.g. High-flux next to low flux)
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Is this the 'real' Diffraction Pattern?Is this the 'real' Diffraction Pattern?

Threshold:
12 ADU for lowest flux

Nearest Neighbors
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Is this the 'real' Diffraction Pattern?Is this the 'real' Diffraction Pattern?

Threshold:
12 ADU for lowest flux

Nearest Neighbors

Really good agreement
for widely varying fluxes.
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How Low?How Low?

This ring less than
10-3 photons/pixel/frame
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How Low?How Low?

This ring less than
10-3 photons/pixel/frame

More than an order of magnitude less
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Some Important PointsSome Important Points

How you reduce the detector data to recover 
meaningful data is not always straight forward.

Giving users mountains (TBs) without direction about 
how to look at it = frustration, duplicated effort.

Full and diligent calibration of detectors is needed 
before users spend time taking data.
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ConclusionsConclusions

For integrating detectors, thresholding (or something 
like it) is required for extremely low photon incidence.

Cornell's pixel array detector (upon which the LCLS 
CXI detector is based) has demonstrated the 
capability of faithfully extracting diffractions patterns 
from extremely low flux (photons/pixel/frame).
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