# Cadmium Telluride pixel sensor development for high sensitivity X-ray imaging device

Hidenori Toyokawa, Toko Hirono, Morihiro Kasase, Shukui Wu, Yukito Furukawa, Toru Ohata Japan Synchrotron Radiation Research Institute / SPring-8

Hiroyasu Ikeda, Goro Sato, Shin Watanabe, Tadayuki Takahashi Institute of Space and Astronautical Sicence, JAXA

toyokawa@spring8.or.jp

# Outline

Introduction

– Si pixel => CdTe pixel detector for HE X-rays

- Basic properties of CdTe sensor
  - Ohmic sensor (Pt electrode)
  - Schottky diode sensor (In, Al electrode)
- SP8-01 and SP8-02 prototype CdTe detector
  - Beam test with SP8-01
  - Stability test with SP8-01 and SP8-02
- Summary

# Introduction

- Pixel detector was expected to be a next generation 2D X-ray detector from the early stage of the 3<sup>rd</sup> generation synchrotron radiation facilities.
- PILATUS detector developed by SLS/PSI has realized X-ray photon counting imaging and is applying in advanced applications.
- SPring-8 has closely collaborated with in the PILATUS project and contributed to module fabrication and developing advanced application methods.



To expand the pixel detector technology to high energy X-ray region above 100 keV which is available at SPring-8 in Japan, we started CdTe pixel detector development in collaboration with ISAS/JAXA.

# Properties of the semiconductors

|                              | CdTe                  | CZT                               | Ge   | Si   |
|------------------------------|-----------------------|-----------------------------------|------|------|
| density (g/cm <sup>3</sup> ) | 5.85                  | ~5.8                              | 5.33 | 2.33 |
| atomic number                | 48, 52                | 48, 30, 52                        | 32   | 14   |
| band Egap energy (eV)        | 1.44                  | ~1.65                             | 0.67 | 1.12 |
| ε (eV)                       | 4.43                  | ~5.0                              | 2.96 | 3.62 |
| resistivity (Ωcm)            | 10 <sup>9</sup>       | 10 <sup>9</sup> ~10 <sup>11</sup> | 3900 | 1400 |
| (μτ) <sub>e</sub> (cm²/V)    | ~2×10 <sup>-3</sup>   | ~1 × 10 <sup>-3</sup>             | 0.42 | 0.22 |
| (μτ) <sub>h</sub> (cm²/V)    | ~1 × 10 <sup>-4</sup> | ~3×10 <sup>-5</sup>               | 0.72 | 0.84 |

For development of high sensitivity X-ray imaging device,

- ✓ high density & atomic number material
- ✓ uniformity of electric properties (resistivity...)
- ✓ effective electrode (ohmic, diode)
- $\checkmark$  readout electronics and bonding

are key technologies!

#### Ohmic- and Schottky-type sensor



Schottky-type +



Long term stability but high leakage current low energy resolution very low leakage current high energy resolution but polarization problem

Because of relatively small  $\mu\tau$  value of CdTe, high bias voltage (~1000V/mm) is required to improve charge collection efficiency.

# Ohmic-type pixel sensor



Both of hole- and electron-collection mode can function by inversing bias polarity.

### Schottky-type pixel sensor

#### hole-collection mode



#### electron-collection mode



Standard In-Schottly pixel sensor only functions as hole-collection mode.

Al pixel-electrode sensor can realize to function as an election-collection type diode sensor.

### SP8-01 and SP8-02 sensors



Hidenori Toyokawa @ JASRI/SPring-8

# ASIC layout designed with TSMC 0.25µm CMOS

**SP8-01** 

#### SP8-02





|        | ASIC size  | Pixel size    | format  | ASIC production | 1 <sup>st</sup> bonding |
|--------|------------|---------------|---------|-----------------|-------------------------|
| SP8-01 | 5mm × 5mm  | 200mm × 200mm | 16 × 16 | October 2009    | January 2010            |
| SP8-02 | 5mm × 10mm | 200mm × 200mm | 20 × 50 | April 2011      | June 2011               |

# SP8-01 and SP8-02 ASIC architecture

To realize all requirements of the readout circuit,
⇒ full custom ASICs have been developed

Block diagram of readout for 1 pixel



# In/Au-stud bonding

- Double stud bumps 40 ~ 50 μm in height were processed on the ASIC with Au wires 25 and 18 μm in diameter
- Small Indium was applied on the stud tips
- ASIC was bump-bonded to the sensor by a standard flip chip technique
- Sensor hybrid was wire-bonded to a commercial ceramic package

chip level process low temperature and soft process





#### SP8-01 sensor package

### SP8-01 test board and control system



# Threshold dispersion of SP8-01 Al-Schottky sensor

- Lower-energy threshold scan with 30keV pencil beam
  - -Infection point of 30 keV  $\Rightarrow$  -49.5mV
  - -Threshold dispersion  $\Rightarrow$  360 e- (1.7keV) rms @ 30 keV



# Linearity of high and low gain mode with SP8-01



# Stability test with thermostatic chamber

- Temperature was controlled between -20 ~ +25 degree.
- Humidity was downed to less than 30% at room temperature and keep this condition at low temperature.
- Then stability test was carried out by continuous low level threshold scans.







#### thermostatic chamber

Hidenori Toyokawa @ JASRI/SPring-8

#### *I-V curve with Pt-Ohmic SP8-02 sensor*



#### Threshold scan with Pt-Ohmic SP8-02 sensor



#### *I-V curve with In-Schottky SP8-02 sensor*



## Threshold scan with In-Schottky SP8-02 sensor



#### *I-V curve with AI-Schottky SP8-02 sensor*



## Threshold scan with Al-Schottky SP8-02 sensor



### Threshold scan with Al-Schottky SP8-02 sensor



# Threshold scan with Al-Schottky SP8-01 sensor



# Summary

- PILATUS detector has realized X-ray photon counting imaging and many systems are in use at synchrotron radiation facilities around the world.
- To aim the next generation detector SPring-8 started to develop high energy X-ray photon counting pixel detector with CdTe sensor technology in collaboration with JAXA.
  - ✓ Detection efficiency in H X-ray region Si (320 $\mu$ m, 450 $\mu$ m) ⇒ CdTe (500 $\mu$ m)
  - ✓ Energy-selected-X-ray diffraction single (lower) level ⇒ window comparator
- The 1<sup>st</sup> prototype of SP8-01 achieved the expected performance with AI Schottky sensor (electron collection type) in 15 – 120 keV region but polarization effect was found at room temperature.
- In the next step, we developed the 2<sup>nd</sup> prototype of SP8-02 with Al-Schottky, In-Schottky (hole collection type) and Pt-ohmic (both collection type) sensors.
- In-Schottky sensor worked well as an diode mode but instability was found at room temperature.
- On the other hand, AI-Schottly sensor could function much stably even at 25 degree in a preliminary result.
- The 2<sup>nd</sup> assemble run is scheduled at the end of this month and we will investigate reliability study with a modulate temperature operation in detail.