Performance Evaluation of a PET Demonstrator for PET-MR Imaging Based on Monolithic LYSO:Ce Scintillators

Icíar Sarasola

CIEMAT – Av. Complutense 22 28040 MADRID – SPAIN Tel: +34 91 496 2591 Fax: +34 91 346 62 75 iciar.sarasola@ciemat.es

International Workshop on Radiation Imaging Detectors (iWoRID) Zurich, July 2011

The BrainPET Scanner

- PET/MRI scanner with APDs which allow operation inside strong magnetic fields.
- Artificial neural network (NN) position determining algorithms provides spatial resolutions in the order of 2 mm FWHM for the LYSO:Ce monolithic blocks

The Experimental Demonstrator Setup

- PET demonstrator based on four crystals face-to-face at nominal BrainPET distance (40 cm).
- Air-cooled boxes for stabilizing the temperature of the APDs.
- 8 rows and 8 columns from the VATA241 ASIC are digitized by 12-bit ADCs.
- Trigger signals provided by the ASIC are processed by a Virtex5 FPGA.
- Three-axis manual positioning stages for moving the source along the PET FoV.
- A precision rotating motor allows acquisition of tomographic data at different angles.

Results

Energy resolution (Photopeak widths):

- ²²Na (511 keV) = 22.0%
- 137Cs (662 keV) = 18.0%
- 22Na (1274 keV) = 11.1%
- Very good linearity (R = 0.99999)

Spatial resolution from NN algorithms:

- Measured spatial resolutions: between 2.20 mm and 2.32 mm FWHM.
- Similar spatial resolutions obtained using a collimated beam width of 1 mm for NN training

Spatial resolution in coincidence with	FWHM (mm)	Center at (mm)
Block 1	2.20	0.13
Block 3	2.21	-0.01
Block 5	2.26	-0.12
Block 7	2.32	-0.17

Coincidence operation:

- Detector block profile by measuring the coincidence count rate over the detector block.
- The readout board works as expected, sending the digitalization of the 8 rows and 8 columns provided by the ASIC to a PC, together with the detector block identifier and its time stamp.

