





#### Wir schaffen Wissen - heute für morgen

# Paul Scherrer Institut Aldo Mozzanica The GOTTHARD charge integrating readout detector: design and

characterization



- Requirements for a strip detector for the XFEL
- Basic principles: preamplifier with automatic gain switching logic
- Read out chip development:
  - Prototype history
  - Design features of the Gotthard 1.0 ROC
- ASIC characterization:
  - Noise at low rates
  - Noise at the lower gains
  - Non linearity
  - Response to fast (X-FEL like) pulses
  - Readout speed and cross talk
- The DAQ system: design and prototyping
- Conclusions



- High dynamic range (in the  $10^4 \gamma$ /ch. range)
- Single photon resolution (@12keV  $\gamma$  energy): same performance as a photon counting device at low rate (low signal regions)
- Electronic noise negligible with respect to Poisson fluctuations at high rate (high signal regions)
- High Linearity (~1%)
- $\bullet$  Strip pitch 50  $\mu m$  or smaller
- Fast front-end: integration-store-reset cycle in <220 ns
- 1 MHz frame rate:
  - Ability to record as many frames per bunch train as possible
  - fast feedback is a plus: control systems, veto
- Radiation tolerant design: ~GRad dose on the sensor (<< on the ASIC)





- 100 fs long X-ray pulses
- ~3000 pulses per bunch train,
- 10 trains per second
- •Frame rate in the bunch
- train:4.5 MHz
- Imaging (100% occupancy)
- •No easy solution, only a
- fraction of the frames will be recorded



- High dynamic range (in the  $10^4 \gamma$ /ch. range)
- Single photon resolution (@12keV  $\gamma$  energy): same performance as a photon counting device at low rate (low signal regions)
- Electronic noise negligible with respect to Poisson fluctuations at high rate (high signal regions)
- High Linearity (~1%)
- $\bullet$  Strip pitch 50  $\mu m$  or smaller
- Fast front-end: integration-store-reset cycle in <220 ns
- 1 MHz frame rate:
  - Ability to record as many frames per bunch train as possible
  - fast feedback is a plus: control systems, veto
- Radiation tolerant design: ~GRad dose on the sensor (<< on the ASIC)



## Automatic switching gain:principle



A.Mozzanica: GOTTHARD design and characterization

# PAUL SCHERRER INSTITUT Preamplifier with gain switching

 Common for 1D and 2D Cf3 s0 CSA in charge integrating Cf2 CDS+storage configuration channel OUT • 3 feedback capacitors: reset • C<sub>f1</sub>=50-100fF latches+ comparator • C<sub>f2</sub>~20xC<sub>f1</sub> input delays reset Th<u>resh</u>old • C<sub>f3</sub>~100xC<sub>f1</sub> Preamplifier Switch gain logic



- Logic after comparator to:
  - Switch a 2<sup>nd</sup> time if 1<sup>st</sup> switch not enough
  - Avoid a 2<sup>nd</sup> switch on spikes due to the 1<sup>st</sup> one
- Switching has to be FAST (<10ns)



GOTTHARD: Gain Optimizing microsTrip sysTem witH Analog ReaDout

-designed in 2004 in UMC0.25 $\mu m$  technology

•100 channels

•4 gain stages with automatic gain switching

•double sample and hold circuit to perform offline CDS

source follower based output bus
single ended output







A.Mozzanica: GOTTHARD design and characterization



## **Prototypes (2008-2010)**





## **GOTTHARD 1.0**

- 6.3x1.4mm<sup>2</sup> 128 channels  $\,$  50  $\mu m$  pitch
- 3 automatic gain stages + 1 High Gain mode
- fast off pixel buffers, to sustain 32MHz readout with no cross-talk
- 4 diff. analog outputs, 8 digital (gain) outputs
- ~ 1mW/ch.
- back from fab. 10<sup>th</sup> Jun.
- Preliminary tests completed



| a James                                 | flo | 00 | rp | la | n | of | - ( | GC | oti | th | a | rc | 1] | 0 |   |  |   |  |  |  |   |   |  |   |  |  |  |   |  |   |  |  |  |  |  |  |  |
|-----------------------------------------|-----|----|----|----|---|----|-----|----|-----|----|---|----|----|---|---|--|---|--|--|--|---|---|--|---|--|--|--|---|--|---|--|--|--|--|--|--|--|
| 0.0000000000000000000000000000000000000 |     |    |    |    |   |    |     |    |     |    |   |    |    |   |   |  |   |  |  |  |   |   |  |   |  |  |  |   |  |   |  |  |  |  |  |  |  |
|                                         |     |    |    | ŰĽ |   |    | Ů   |    |     | ]Ľ | Ĺ | Ú  |    | Ď | Ď |  | Ď |  |  |  | Í | Ú |  | Ú |  |  |  | l |  | ļ |  |  |  |  |  |  |  |



#### Noise - high gain mode

- •measured with X-ray tube and Ag fluorescence light (22 keV)
- •120 V detector bias
- ~ 1 us integration time





•P.H. of each channel is fit: peak pos. gives the gain, sigma of the gaussian at 0 the noise

•Noise ~ 160 e.n.c.





- Measured on Gotthard0.3
- single photon resolution can be retained down to ~3.5 keV photon energy
- At lower energy 2 or more  $\gamma$ s can still be separated from the noise floor
- Sensors with thin "entrance window" have to be developed
- Silicon drift sensors will be tried soon
- Lower noise version of the chip is planned



- Gain1 is the starting gain for the switching mode
  measured with Cu fluorescence light (8 keV)
- •120 V detector bias
- ~us integration time
- •Average noise is 260 e.n.c.
- SNR=13 (for a 12 keV photon signal)
- •Gain1 total range ~ 80 ph. --> Dynamic range in excess of 10bit with one gain only







## Noise - many photons



- an integration time scan at constant input current (visible light) was used to evaluate the noise at low gains
- CDS increases the noise of gain 2 and 3: a circuit to disable CDS after switch is present
- at all gains the electronic noise is well below the Poisson level
- "terminal" saturation at 10<sup>4</sup> ph.





CDS disabled after switch

- for each stage a linear fit is performed
- for each intensity the difference between the line and the measured ADC value is plotted
- linearity errors within +- 0.5% (source effects included) in the design input range (0-10<sup>4</sup> ph.)
- On smaller ranges better linearity can be achieved



- On Gotthard0.3 prototype
- delay scan with a high intensity laser pulse (~500 12keV photons)
- with a 200ns integration time
- CDS output settles in <30ns
- integration times as small as 80-50ns can be used





- similar result (in terms of speed) with or without automatic gain switching
- the preamplifier+switching circuitry can work at E-XFEL rates (4.5MHz)



## Switching gain at speed

- Measured with Gotthard0.3 prototype
- Integration time 200ns, pulse in the middle of it
- Point dispersion mainly due to the uncertainty on the laser attenuation filters
- Switching works at the required speed





#### **Readout Noise**





- Reading many times the value
  - stored on one channel capacitor
  - --> preamp. and CDS

disconnected

- repeated for many frame, frame average computed
- Readout noise  $\sigma_{_{\text{read}}}$  is

$$\sigma_{read} = sqrt(\sigma_{all}^2 - \sigma_{ave}^2) = 5.2ADC$$

•~90 (25) e.n.c. in gain1 (HG)



#### **Readout speed**



- Measured at high gain, with a large integration time
- from 0 to 7-8 ph. per frame per ch.
- events with 0 on ch. and few on the nearby one allow to estimate the cross talk
- 1.5% (Va dependent) xtalk due to charge coupling between strips
- < 1% xtalk due to readout</li>
- room for improvement (timing, biasing..)



## **GOTTHARD** module: overview



- 67mm x 130mm
- 50 μm pitch, 1280ch/module (same as MYTHEN)
- 10 chips, 4 analog outputs per chip
- 40 ADC channels @50Mhz,14bits
- Fast readout (1MHz)
- Gbit Ethernet data transfer allows 100kHz cont. rate; 1MHz chip readout possible:
  - in bursts (E-XFEL)
  - with FPGA data spars.
- 100T Ethernet for control/setup
- Back from manufacturer in late July 2011







#### **Prototype PCB**



- Similar to the real module but with chip replaced with connectors
- Used to develop/test:
  - CPU and FPGA comm.
  - Gigabit UDP packets tx.
  - ADC to FPGA interface
- Board firmware (Gigabit MAC) developed in collaboration with Fachhochschule Nordwestschweiz (Brugg)





|                                  | Specifications                 |
|----------------------------------|--------------------------------|
| module size                      | 6.7x13 cm                      |
| sensitive area                   | 64x10mm                        |
| sensor thickness                 | 320-500 μm                     |
| pitch                            | 50 μm                          |
| dynamic range                    | 10 <sup>4</sup> 12keV photons  |
| min Energy                       | <3.5 keV                       |
| linearity                        | better than 0.5%               |
| point spread function            | O(pitch)                       |
| min int. time                    | 80ns                           |
| dead time                        | <50ns                          |
| cooling                          | air                            |
| readout time = 1 /<br>frame rate | 100kHz continuos<br>1MHz burst |
| XFEL ready                       | YES                            |

- Full characterization of Gotthard 1.0 to be finished soon
- Gotthard module integration (ASIC+sensor+readout) by the end of Summer
- Commissioning and calibration of the modules before the end of the year
- Available for experiments at the SLS in 2012

## Conclusions

- A charge integrating strip detector for XFEL beams is being developed at PSI
  The GOTTHARD1.0 ROC has been designed, manufactured and tested
  the measurements showed:
  - single photon resolution at high gain for energies down to ~3.5keV
  - low noise and high linearity on the full dynamic range
  - Gain switching works, for slow and fast (XFEL) signals
  - readout at 1MHz frame rate is possible
- •a prototype of the DAQ system has been tested
- •The final DAQ board is now in fabrication
- •The complete GOTTHARD detector will be commissioned by the end of the year





## Acknowledgments

A. Bergamaschi, R. Dinapoli, D. Greiffenberg, B. Henrich,
I. Johnson, D. Maliakal, C. Ruder, B. Schmitt and X. Shi *Paul Scherrer Institut, 5232 Villigen, CH*J.BECKER, H. GRAAFSMA, M. LOHMANN *DESY, 22607 Hamburg, DE*



#### **Backup slides**



A.Mozzanica: GOTTHARD design and characterization



## **Correlated Double Sampling**

- The main contribution to the noise in the highest gain is the reset noise
- if we only sample the signal at T1 we see the reset noise
- if we measure at T1 and T0 and make the difference, reset noise contribution is eliminated







## **G01-charge interpolation/2**

- To measure the spatial resolution a  $2\mu m$  W slit has been scanned in  $1\mu m$  steps in front of the strips

X motor stage

1µm steps

slit parallel to strips

rotary stage

for slit alignment

- Vertical beam size  ${\sim}100\mu m$
- Strip pitch 20 $\mu$ m, 15keV beam



JJ slits



## G01-charge interpolation/3



- $3\mu m$  thick gold writing on  $300\mu m$  silicon substrate
- 15 keV beam, vertically defined by a  $2\mu m$  W slit
- $\bullet$  sample is vertically moved in  $1\mu m$  steps
- 20000 "single photon" images per step









- Gotthard01 (UMC0.25) 100ch
  - 400ch modules, different

sensors

- Extensively tested
- Gotthard02 (IBM 130nm) 80ch
  - Preamp. noise
- Gotthard03 (IBM 130nm) 80ch
  - gain switching, fast readout
  - tests successful so far
- AGIPD01 (IBM 130nm) 12 ch.
  - Preamp. noise
  - switching gain validation
- AGIPD02 (IBM 130nm) 16x16ch.
  - 10x10 analog memory
  - storage cell variations
  - bump-bondable

•AGIPD03 (IBM 130nm) – 16x16ch. •storage cell charge readout

•serial control interface

Common DAQ system based on

embedded CPU + low cost FPGA

- 4 fast ADC channel (14bit,80MHZ)
- 16 slow ADCs, 16 DAC channels
- up to 48 digital I/O
- integrated High voltage P.S.
- 100Mbit/s Ethernet link



## **Comparison Table**

|                                            | Photon Counting                                   | Standard charge                                          | Charge integrating,                                      |  |  |  |  |  |  |
|--------------------------------------------|---------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--|--|--|--|--|--|
|                                            | g                                                 | integrating                                              | "counting" mode                                          |  |  |  |  |  |  |
| dynamic range                              | up to 2 <sup>24</sup> (=1.7x10 <sup>9</sup> )*    | 10 <sup>4-5</sup> with gain switching*                   | up to 2 <sup>nbit</sup> (FPGA memory)                    |  |  |  |  |  |  |
| At low rate                                | noise free                                        | Noise increase with int.<br>time                         | noise free**                                             |  |  |  |  |  |  |
| max acq. time                              | inf.                                              | limited by dark current                                  | inf.++                                                   |  |  |  |  |  |  |
| max count rate                             | ~1MHz at 90% eff. *                               | Practically inf.                                         | Practically inf. (increasing dead time)***               |  |  |  |  |  |  |
| min Energy                                 | ~3keV *                                           | only sensor dependent                                    | only sensor dependent****                                |  |  |  |  |  |  |
| min pitch                                  | limited by charge sharing                         | small pitches possible                                   | small pitches possible                                   |  |  |  |  |  |  |
| Photon energy<br>background<br>subtraction | Possible                                          | Possible at very low rates                               | Possible at low rate +                                   |  |  |  |  |  |  |
| linearity                                  | OK, except for high count rates                   | Depends on electronics,<br>within Poisson noise          | ОК                                                       |  |  |  |  |  |  |
| point spread function                      | O(pitch)                                          | O(pitch)                                                 | O(pitch/SNR) with charge in-<br>terpolation <sup>+</sup> |  |  |  |  |  |  |
| dead time                                  | down to ~0*                                       | down to ~0 **                                            | down to 0                                                |  |  |  |  |  |  |
| readout time = 1 /<br>frame rate           | limited by the digital data<br>transfer, 12.5kHz* | limited by the ADC, (~1MHz<br>strips,~1kHz for pixels**) | n.d.                                                     |  |  |  |  |  |  |
| XFEL ready                                 | NO                                                | YES                                                      | NO                                                       |  |  |  |  |  |  |
| Notes                                      | * best values for current system                  | ** planned detectors                                     | *** incompatible with +                                  |  |  |  |  |  |  |
|                                            | **** incompatible with + and ++                   |                                                          |                                                          |  |  |  |  |  |  |
|                                            | PRO                                               |                                                          |                                                          |  |  |  |  |  |  |



|                                  | Specifications<br>TBD         |
|----------------------------------|-------------------------------|
| mudule pixel count               | 525k                          |
| mudule size                      | 80x40 mm <sup>2</sup>         |
| sensor thickness                 | 320-500 μm                    |
| pixel size                       | 75x75 mm <sup>2</sup>         |
| dynamic range                    | 10 <sup>4</sup> 12keV photons |
| noise                            | <150e-                        |
| min Energy                       | <3 keV                        |
| linearity                        | better than 1%                |
| point spread function            | 1 pixel                       |
| min int. time                    | 80ns                          |
| dead time                        | <50ns                         |
| cooling                          | liquid                        |
| readout time = 1 /<br>frame rate | 100-250Hz                     |

- Storage cells are no longer needed, so the AGIPD electronic can be fit into a 75x75µm<sup>2</sup> pixel
- 256x256 pixels per chip
- 8 chip/module
- mechanics/part of electronics in common with the EIGER and Gotthard projects: shorter development time
- noise (and min. photon energy) will be smaller than GOTTHARD, but has to be measured



## "counting mode"



Loop on channels, for each one:

- •Divide ACD out by single photon peak
- •Obtain the number of photons in the integration time
- •Add this number of photons to the channel counter







## **XFELs => charge integration**

Synchrotron source: •Huge number of "weak" photon bunches •Photons impinge on the detector with a random time distribution

XFEL:
Fewer intense bunches
All photons inside the bunch coming at once
Up to 10<sup>4</sup> photons per ch. per bunch





#### **GOTTHARD02**



- Designed Oct 2009 in IBM130nm technology
- 80 channels, 8 preamplifier
   variations (strength and DC gain)
- Each channel has an analog CDS stage and a double sample and hold circuit
- a variation with a multi-sample logic with tunable delay





#### **GOTTHARD03**





- 80 channels
- Switching logic, 3 gains, with storage and readout of the gain settings
- High gain setting: optional bigger gain in the CDS buffer
- recombination logic to bypass the CDS stage in 2<sup>nd</sup> & 3<sup>rd</sup> gain (optional)
- Improved output chain to increase readout speed to 32 ~MHz, without increasing the noise



## **G03 Noise measurements/2**



- Channel by channel gain variation at a few percent level
- Noise between 140 and 180 e-
- Noise variation probably due to different leakage current values
- Noise does not increase at the max. readout clock speed (32MHz)
- Limited cross talk at fast readout speeds

