Complementary uses of Free Electron Lasers and High-Harmonic Sources

Max-Born-Institut

Marc Vrakking

Max-Born-Institut (MBI), Berlin, DE

SCIENCE@FELs Villigen, 17-9-2014

Source parameter comparison FEL vs. HHG

Parameters	Flash FEL	Fermi	LCLS	SACLA	EU XFEL
	(Hamburg 2005)	(Trieste, 2010)	(Stanford, 2009)	(Hyogo, 2011)	(Hamburg, 2015)
Ee	1.25 GeV	1.24 GeV	13.6 GeV	8 GeV	17.5 GeV
γ	2,450	2,300	26,600	15,700	35,000
Î	1.3 kA	300 A	3.4 kA	3 kA	5 kA
λ_{u}	27.3 mm	55 mm	30 mm	18 mm	35.6 mm
N	989	216	3733	4986	4000
Lu	27 m	14 m	112 m	90 m	200 m
ħω	30-300 eV (4-40 nm)	20-60 eV (20-60 nm)	250 eV - 12 keV (1-50 Å)	4.5-15 keV (0.8-2.8 Å)	4-12 keV (1-3 Å)
$\lambda/\Delta\lambda_{\rm FWHM}$	100	1000	200-500	200-400	1000
$\Delta au_{ m FWHM}$	25 fsec	85 fsec	70 fsec	30 fsec	100 fsec
$\dot{\mathcal{J}}$ (ph/pulse)	3×10^{12}	5×10^{12}	2×10^{12}	$5 imes 10^{11}$	10 ¹²
rep rate	5 Hz	10 Hz	120 Hz	60 Hz	5 Hz/27 kHz
Ŷ	1 GW	1 GW	25 GW	30 GW	20 GW
L	260 m	200 m	2 km	710 m	3.4 km
Polarization	linear	variable	linear	linear	variable (?)
Mode	SASE	Seeded (3ω Ti: saphire)	SASE	SASE	SASE

Flash II, Fermi II, SLS FEL, LCLS II,

FreeElectronLasersChart_June2014.ai

Prof. David Attwood / Basel FEL Conference August 25-29, 2014

XUV/X-ray pulses from High Harmonic Generation

Source parameter comparison FEL vs. HHG

A sampling of what is possible using HHG

K. Midorikawa and co-workers, Nat. Comm. 4, 2691 (2013) 9 mJ, 800 nm, 30 fs + 2.5 mJ, 1300 nm, 35 fs → 1.3 µJ pulse in 28-35 eV, 500 as

A. Baltuska and co-workers, Science 336, 6086 (2012)

10 mJ, 3.9 μ m, 80 fs \rightarrow 10⁵ photons per shot in a fractional bandwidth of 1% at 1 keV

Our own work (B. Schütte et al., in preparation)

 $4x10^{14}$ *W/cm*² , 800 nm, 50 fs + $9x10^{14}$ *W/cm*² 1300 nm, 50 fs \rightarrow 10^7 photons per shot between 70 and 160 eV

Contents of this talk

Pump-probe spectroscopy on molecules

- Using photoelectron holography for time-resolved measurements of molecular structure
- XUV-induced molecular dynamics

 Probing charging and dissociation of highly-excited rare gas clusters

Holography in XUV/X-ray photoionization

Landers et al, Phys. Rev. Lett. 87, 013002 (2001)

C(1s) core-shell photoemission from CO using 294 to 326 eV radiation.

Away from the Carbon atom (black) the angular distribution is relatively unstructured.

In the direction of the Oxygen atom (red) a holographic structure is observed.

Pump-probe experiments at the FLASH FEL

Dynamic alignment of CO₂ at the FLASH FEL

P. Johnsson et al., J. Phys B 42, 134017 (2009)

Dissociation of aligned Br₂ at the FLASH FEL

13 nm ionization

400 nm dissocation

800 nm alignment

Implementation of protocol for three-color alignment-pump-probe experiments FEL-IR/UV overlap on the basis of dissociative ionization of H₂

N. Berrah et al., Journal of Modern Optics 57, 1015 (2010)

Dissociation of aligned Br₂ at the FLASH FEL

A. Rouzée al., J. Phys. B 46, 164029 (2013)

Dissociation of aligned Br₂ at the FLASH FEL

Demonstrated all the essential ingredients required for timedependent photoelectron holography experiment: alignment, dissociation, photoelectron imaging, three-pulse pump-pump-probe scans

But: no successful photoelectron delay scans yet

A. Rouzée al., J. Phys. B 46, 164029 (2013)

Dynamic alignment of CO₂ probed with HHG source

Photoelectron angular distributions from aligned CO₂ molecules

Differential PAD: alignment – anti-alignment

x momentum

F. Kelkensberg et al., PRA 84, 051404 (R) (2011)

Angular distributions evolve with energy

- 1. Angular distribution sensitive to electronic structure
- Energy dependence from interaction with molecular Coulomb field → molecular structure

F. Kelkensberg et al., PRA 84, 051404 (R) (2011)

Going from copolarized to crosspolarized pulses

Comparison with R-matrix calculations for CO₂

A. Rouzée et al., J. Phys. B 47, 124017 (2014)

A. Rouzée et al., J. Phys. B 47, 124017 (2014)

Selecting single harmonics with a timecompensating monochromator

Collaboration with Luca Poletto (Padua)

Time-compensating XUV monochromator

zero-th order

first order

H17

H19

Martin Eckstein and Oleg Kornilov

Beamline design and parameters

•Time resolution: <25 fs (cross-correlation between XUV and IR)

- Spectral resolution: <500meV (deduced from Ar photoelectron spectra)
- Transmission: 3%-16% for 3 eV 50 eV (calibrated XUV photodiode)
- Continuous automated scans in the complete spectral range
- Long term stability: scan durations >36 hrs
- •Up to 10⁷ photons per pulse at 1kHz repetition rate

Martin Eckstein and Oleg Kornilov

Proof of concept: Photochemistry of N₂

XUV-only photoelectron images revealing the participation of successive ionic states

Extracting dissociation thresholds for the F- and Hstate $F \rightarrow N^+ (^{3}P) + N (^{2}D)$ $H \rightarrow N^+ (^1S) + N (^2P)$ E = 26.676 eV (L3)

E = 31.921 eV (L9)

X conventional wisdom!

Time-dependent dynamics: XUV + IR

50 N₂++ 45 40 Σg Energy (eV) 32 32 30 N₂+ 25 20 Ν, 15 1.5 2.0 2.5 3.0 3.5 4.0 1.0R (A)

Potential energy curves

Removal of an electron from the $2\sigma_g$ orbital excites the N_2^+ ion in the H-band and leads to dissociation, dominantly to the L9 dissociation threshold, and with smaller contributions from higher-lying states.

The contributions from higherlying states can be further ionized using 3-photon excitation by the IR laser, leading to Coulomb explosion of the molecule

Time-dependent dynamics: XUV + IR Differential Ion KER distributions

Enhancement

Depletion

Time-dependent dynamics: XUV + IR

50 N₂++ 45 40 Σg Energy (eV) 32 32 30 N₂+ 25 20 N₂ 15 1.5 2.0 2.5 3.0 3.5 4.0 1.0

R (A)

Potential energy curves

Removal of an electron from the $2\sigma_g$ orbital excites the N_2^+ ion in the H-band and leads to dissociation, dominantly to the L9 dissociation threshold, and with smaller contributions from higher-lying states.

The contributions from higherlying states can be further ionized using 3-photon excitation by the IR laser, leading to Coulomb explosion of the molecule

The Coulomb explosion gives a characteristic contribution in the photoelectron spectrum

Time-dependent dynamics: XUV + IR Differential Electron KE distributions

Conclusions and Implications

- Commissioning XUV time-compensating monochromator beamline
- > Major H-band dissociation channel \rightarrow L9: N⁺ (¹S) + N (²P)
- > Main pump-probe response comes from secondary channel \rightarrow L11
- Strong impact on atmospheric models: ²P atoms are 2 orders of magnitude less reactive than ²D atoms!!!

2.3.1. Photodissociation

The complex chemistry of Titan's atmosphere is initiated with the photodissociation/photoionization of molecular nitrogen and methane (in the current calculations the contributions of energetic particles are not included and ionization is considered only for N_2). Photons in the EUV region of the solar radiation spectrum, depending on their energy, are able to ionize and dissociate N_2 according to the following pathways (Banks and Kockarts, 1973; Nicolas et al., 2003):

$$\begin{split} N_{2} + hv &\to N(^{4}S) + N^{+} + e^{-}(10\%)\lambda < 510 \text{ Å} \\ & \xrightarrow{\to N(^{2}D) + N^{+} + e^{-}(90\%)\lambda < 510 \text{ Å}} \\ & \xrightarrow{\to N_{2}^{+} + e^{-}} 510 \text{ Å} < \lambda < 796 \text{ Å}} \\ & \xrightarrow{\to N(^{2}D) + N(^{4}S)796 \text{ Å} < \lambda < 1000 \text{ Å}}. \end{split}$$
(25 eV)

Huygens-Cassini mission to Saturn

Lavvas et al, Planetary and Space Science 56,27 (2008)

Contents of this talk

Pump-probe spectroscopy on molecules

- Using photoelectron holography for time-resolved measurements of molecular structure
- XUV-induced molecular dynamics

 Probing charging and dissociation of highly-excited rare gas clusters

High-flux HHG beamline:

HHG very promising for improved understanding of cluster dynamics

Clusters in HHG / FEL pulses

FEL results can be qualitatively reproduced!

Look at charging dynamics using THz streaking

Lesson from attosecond science: time-dependent photoionization can be revealed by a streaking measurement

Kienberger et. al. Nature 427, 817 (2004)

Fragmentation and Recombination dynamics

Frustrated Recombination:

B. Schütte et al., PRL 112, 073003 (2014)

Reionization of Excited Atoms from Recombination (REAR)

Short time delays: Resonance effects

NIR induced signals

Fragmentation and Recombination dynamics

B. Schütte et al., PRL 112, 253401 (2014)

Summary and outlook

Free electron lasers offer unparalleled performance when very high photon energies (> 1 keV) or very high XUV/X-ray non-linearities are required

High harmonic generation (HHG) can serve as a complementary source under conditions where the required photon energies are somewhat lower (< 1 keV) or under conditions where the dependence on the XUV/X-ray intensity is linear or of modest order The easy (full-time) access and the ready availability of synchronized secondary sources (IR, UV, THz) is a major advantage

Anticipated technical improvements:

- Broadband continua up to and possibly beyond the O K-edge
- Monochromatized XUV-IR/UV pump-probe spectroscopy with ≤ 10 fs resolution
- ▶ Focusibility of single harmonics to $\geq 5 \times 10^{13} \text{ W/cm}^2$
- XUV pump-XUV probe spectroscopy with attosecond time resolution

Acknowledgements

Max-Born-Institut

> MBI:

FEL & HHG MFPAD experiments: Arnaud Rouzée Monochromator beamline: Oleg Kornilov, Martin Eckstein Cluster experiments: Bernd Schütte, Arnaud Rouzée Theory support: Olga Smirnova, Alex Harvey

- AMOLF: Freek Kelkensberg, Wing Kiu Siu, Georg Gademann
- Lund: Per Johnsson
- Padua: Luca Poletto c.s.
- Rostock: Thomas Fennel, Matthias Arbeiter
- TU Berlin: Maria Krikunova