Contribution ID: 31 Type: Contributed Talk ## Multiphoton induced x-ray fluorescence of Fe atoms Wednesday, 17 September 2014 10:00 (25 minutes) We report on multiphoton processes involving inner-shell electrons of solid Fe with very intense and ultrashort hard x-ray free-electron laser (XFEL) pulses. The experiment was carried out at the CXI end-station of the Linac Coherent Light Source by means of the high energy resolution x-ray emission technique. The XFEL beam of ~10^12 photons/pulse and pulse energy in the range of 1-4 mJ was focused on the solid Fe sample. The ultra-focused x-ray beam provided an extreme fluence (~10^4-10^5 photons/Å^2). Moving the sample out of the focus along the beam allowed varying the fluence. For the K x-ray emission spectra measurements the bent crystal von Hamos x-ray spectrometer of PSI [1] installed at CXI and equipped with the CSPAD detector developed at SLAC was employed. To explore the nonlinear interaction of Fe atoms with high-fluence XFEL radiation the photon beam energies were chosen below the Fe K-shell single- and double-ionization thresholds. The K x-ray emission spectra comprising the $K\alpha$ (K^{-1}->L^{-1}) diagram lines and the rich satellite structures due to the multiphoton induced multiple ionization, as well as the $K\alpha$ h hypersatellite (K^{-2}->K^{-1}L^{-1}) transitions, were measured as a function of the XFEL fluence. The obtained results evince the nonlinear two-photon processes leading to K-shell ionization, and the K-shell hollow atom formation following sequential two-photon absorption. [1] J. Szlachetko et al., Rev. Sci. Instrum. 83, 2012, 103105. **Primary author:** Dr HOSZOWSKA, Joanna (Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland) Co-authors: Prof. PATTERSON, Bruce (Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland); Dr DAVID, Christian (Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland); Dr MILNE, Christopher (Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland); Prof. CHANTLER, Christopher. T. (School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia); Dr WILLIAMS, Garth (Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 94025 California, USA); Dr SMOLENTSEV, Grigory (Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland); Dr DE PAIVA SA, Jacinto (Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland); Prof. DOUSSE, Jean-Claude (Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland); Dr NACHTEGAAL, Maarten (Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland); Dr MESSERSCHMIDT, Marc (Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 94025 California, USA); Prof. PAJEK, Marek (Institute of Physics, Jan Kochanowski University, 25-406 Kielce, Poland); Dr ABELA, Rafael (Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland); Dr BOUTET, Sébastien (Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 94025 California, USA); Mr BLACHUCKI, Wojciech (Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland); Dr KAYSER, Yves (Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland) **Presenter:** Dr HOSZOWSKA, Joanna (Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland) **Session Classification:** Matter under extreme Conditions Track Classification: Matter u. extreme Conditions